

Phase 2

Phase 2

- The SuperKEKB accelerator will be operating, for the first time, with QCS magnets
 First operation with focused beams
 First beam collisions
- The Belle II detector, minus the vertex detector (VXD), rolled into the beam line

Reminder: Understanding the Backgrounds

- Collimator study: Collimator opening scan
- Touscheck backgrounds: Beam spot size scan, machine current variation, increase number of bunches and different collimator settings
- Beam gas backgrounds: Background evolution with vacuum level
- Luminosity backgrounds: Scan beam spots relative position, spot size and beam currents scan.
- Noise injection (continuous and single bunch)
 - Time constants and functional timing dependency
- Phase 2 PXD
 - Determination VETO timing width for the PXD

 \rightarrow A comprehensive program is being elaborated based on Phase 1 experience

Phase 2 Detector Systems

Sensor	Contact	Contact Number	
Belle II PXD	C. Marinas	2 ladders	VXD
Belle II SVD	K. Nakamura	4 ladders	VXD
Diamond Sensors	L. Vitale	8 diamonds	VXD
FANGS	C. Marinas	3 arms 15 chips	VXD
CLAWS	F. Simon	2 ladders	VXD
PLUME	I. Ripp-Baudot	2 ladders	VXD
Radiochromic foils	F. Di Capua	18	VXD
Micro-TPC	S. Vahsen	8 units	Dock
He-3	C. Miller	4 units	Dock

Sensor	Contact	Number	Location	
FPGA	R. Giordano	2 boards	SuperKEKB beam pipe	
LYSO-ECL	A. Fodor	4+4 crystals	ECL endcap shield	
pin diodes	M. Barret	40	QCS	
QCSS	H. Nakayama	40	QCS	

Phase Scale	Socio	LER		HER		Duration	
	Scale	β _x * [mm]	β _y * [mm]	β _x * [mm]	β _y * [mm]	month	
2.0*	300	384	81	400	81	1	No collision
2.1	20	384	5.4	400	6.0	0.5 - 1	Collision test
2.2	8 x 8	256	2.16	200	2.4	1	Collision tuning
2.3	4 x 8	128	2.16	100	2.4	1	Collision tuning
2.4	4 x 4	128	1.08	100	1.2	1	Collision tuning

It takes 1.5 - 2 months to move on Phase 2.2 for verification of the nano-beam scheme.

Target: 4x10³⁴ cm⁻² s⁻¹

The accelerator is optimized to Y(4S) energy, especially IR design. It is very difficult to change beam energy within a month.

Dhasa Sasla		LER		HER		Duration	
Phase Scale	Scale	β _x * [mm]	β _y * [mm]	β _x * [mm]	β _y * [mm]	month	
2.0*	300	384	81	400	81	1	No collision
2.1	20	384	5.4	400	6.0	0.5 - 1	Collision test
2.2	8 x 8	256	2.16	200	2.4	1	Collision tuning
2.3	4 x 8	128	2.16	100	2.4	1	Collision tuning
2.4	4 x 4	128	1.08	100	1.2	1	Collision tuning

- Real machine related backgrounds (Touschek, Coulomb, Lumi)
- Regular studies

Plans at Phase 2 Start

Phase	Seele	LER		HER		Duration	
	Scale	β _x * [mm]	β _y * [mm]	β _x * [mm]	β _y * [mm]	month	
2.0*	300	384	81	400	81	1	No collision
2.1	20	384	5.4	400	6.0	0.5 - 1	Collision test

- Final VXD calibration with circulating beams
- Collimator adjustment
 - Operational beam abort system

Phase 2 Set Up

Motivation for **BEAST II**:

- Machine commissioning
- Radiation safe environment for the VXD:
 - Two (four) PXD (SVD) ladders
 - Dedicated radiation monitors FANGS, CLAWS, PLUME

Phase 2 Set Up

Phase 2 Pre-Integration Tests

FANGS production stave operated attached to the PXD SCBs

Dock space integration tests TPC + He3 + PLUME Patch Panel

cmarinas@uni-bonn.de

Phase 2 Pre-Integration Tests

- Feasibility demonstrated in Europe
 - Mounting sequence. Mechanical integration
 - Cooling
 - Grounding
 - Common operation in TB2017 and PERSY

cmarinas@uni-bonn.de

Integration Status

TPC

- TPC acceptance system at KEK
 - TPCs
 - Gas System
 - DAQ system
- Tested each TPC with a single ²¹⁰Po source
- Installation ongoing

³He

- Equipment tested and available at KEK
- Installation ongoing

VXD Clean Room

B4 VXD clean room

- Granite table with Phase 2 BP
- Rotating stage

Services (Phase 3) complete:

- Electrical infrastructure
- Safety systems
- Connection to EHut

cmarinas@uni-bonn.de

111

Back End Electronics

1

cmarinas@uni-bonn.de

SVD and cooling plant

Beam Loss Monitors

Diamonds powered and tested with radioactive source

4 diamonds in FWD and 4 in BWD Radiochromic foils

cmarinas@uni-bonn.de

15.55

bwd-Seite

4 PXD modules

half shell for BEAST-PXD

¢

PXD

-

fwd-Seite

Staves operational

3 FANGS staves

-

67

and out at a state and and the second

half shell for BEAST-ta

cmarinas@uni-bonn.de

20

cmarinas@uni-bonn.de

2 PLUME ladders

Ladders operational

cmarinas@uni-bonn.de

1110

673

Executive Summary

- 1. TPC and ³He installation ongoing.
- 2. VXD clean room prepared.
- 3. Diamonds installed. Functionality verified.
- 4. PXD installed. Functionality verified.
- 5. FANGS installed. Functionality verified.
- 6. CLAWS installed. Functionality verified.
- 7. PLUME installed. Functionality verified.
- 8. Beam pipe in final configuration. Support structures removed. Rings installed.
- 9. SVD tools prepared and first tests. SVD installation 16th OCT.
- 10. VXD insertion 21st NOV.

Picking up tool in the clean room

SVD

Thank you

Phase 2 PXD Status

Phase 2 PXD

- W37_IF (HLL)
- W46_IB (MPP)
- W37_OB1 (BN)
- W37_OF1 (GOE)

• Phase 2 configuration: 2 ladders in +X direction

Back in that time, the ladder gluing process was not entirely under control → Modules in Phase 2

Phase 2 PXD Lab Testing

Mass production testing scripts and modules running at nominal frequency:

- DHPT high speed link scans
- DCDB-DHPT delay settings
- ADC optimization
- Pedestal compression
- Source scans (but in W46_IB)
- Gated mode (verified only on W37_IF)

Phase 2 PXD Lab Testing

Delay scans

DX9-T2A38 tot lishe tish

• Patch panels

bwd-Seite

PXD

- DockBoxPCB
- 16 m long cables to PS and back end

4 PXD modules

fwd-Seite

-

Back End Electronies

ib maker a

ann

Power supplies ATCA DHH*

PXD Back End

- Integration tests with Belle II DAQ ongoing
- Data (DHPT test patterns) transmitted via DHH all way down to ONSEN in Ehut
- Slow Control and PXD servers in place

Forward Side

00

00

Backward Side

TPC #1

PC#5

Summary

- 1. Phase 2 modules optimized in the testing labs
- 2. Verification at PERSY after module mounting
- 3. PXD installed at KEK. First response from all 4 modules
- 4. After SVD installation: Closing the volume and cool down
- 5. VXD combined test, switching modules on
- 6. VXD insertion 21st NOV.

Thanks

Requests to accelerator group

BG machine studies

- For Touschek study (Phase1 experience)
 - Hardware instruments to change beam size, called as "emittance control bump" (already prepared for phase1 study)
 - Also change beam/bunch currents, bunch numbers, and collimator settings
 - Relevant people: Funakoshi-san, Masuzawa-san, Iida-san
- For beam-gas study (Phase 1 experience)
 - For vacuum bump (NEG-heating) heaters inside magness solution be replaced to DC version (some of them are already replaced for phase1 study)
 - We also measure chronological chapter, and current evel improves during whole phase2 period
 Relevant people: vacuum group
- For Luminosity study
 - First measurement in Phase 2,
 - Change luminosity in 3 ways: a) separate beams vertically, b) change beam sizes, and c) change beam currents
 - Any new accelerator hardware equipment required for a) ?

(Request to Belle DAQ)

During Touschek/beam-gas/luminosity studies, global Belle DAQ should take Belle detector data simultaneously, <u>with random trigger</u>

Need enough luminosity to vary

efer single-beam

Prefer single-beam

PXD Module Calibration Runs

1) High Speed Links

Bias vs Bias_d; Biasdelay=0. Step 5.

2) DCD-DHP communication

Local vs Global delays.

3) DCD: Range, Long Codes, Noise, Communication Errors, INLpp. Default gain = En90. Nominal speed.

- \rightarrow IPSource vs IPSource 2; steps of 5 units
- \rightarrow IFBPBias; steps of 5 units
- \rightarrow RefIn vs AmpLow; steps of 50 mV
- \rightarrow IPSourceMiddle

For the optimal set of parameters, plot Linearity, Noise and Gain and number of non working channels.

4) Matrix

Source: 7V; Gate OFF: 3V; Gate ON: -2.5 V, ClearGate: -1V; Clear ON: 19 V; Clear OFF: 6 V; High Voltage: -70 V; Drift: -5 V

Threshold 5. Pedestal scans. Threshold voltage adjustment.

5) Injection veto

• If PXD full parameter space scan with high granularity \rightarrow Few days

Example of PXD parameter sweep

• Well defined SVD calibration run protocol also exists

Diamonds:
 8 diamonds
 Radiochromic foils
 → Noise and signal response with a radioactive source.

- 1. Beam pipe
- 2. Diamonds (3d)

PXD:
 2 ladders
 → High speed links (DHPT only on)

- 1. Beam pipe
- 2. Diamonds
- 3. PXD (5d)

• FANGS:

3 staves

 \rightarrow Basic response of individual chips. Internal circuitry.

- 1. Beam pipe
- 2. Diamonds
- 3. PXD
- 4. FANGS (2d)

- CLAWS:
- 2 ladders
- \rightarrow Basic response of SiPM on the ladders with light.

- 1. Beam pipe
- 2. Diamonds
- 3. PXD
- 4. FANGS
- 5. CLAWS (2d)

• PLUME:

2 ladders

 \rightarrow Basic response of ladders. Internal circuitry.

- 1. Beam pipe
- 2. Diamonds
- 3. PXD
- 4. FANGS
- 5. CLAWS
- 6. PLUME (2d)

- 1. Beam pipe
- 2. Diamonds
- 3. PXD
- 4. FANGS
- 5. CLAWS
- 6. PLUME (2d)
- 7. End flanges

Confirmed in PERSY and during Gemba: → Integration and test procedure

- 1. Beam pipe
- 2. Diamonds
- 3. PXD
- 4. FANGS
- 5. CLAWS
- 6. PLUME
- 7. End flanges
- 8. SVD cartridge (5d) ⁵⁰

Detection Principle

- Detect neutrons from nuclear recoils:
 - 1. Neutron scatters off of an alpha particle
 - 2. The recoiling He-nucleus creates an ionization trail in the He:CO2 gas
 - 3. Electrons drift against the electric field in the field cage toward GEMs where their numbers are multiplied thousands of times
 - 4. Pixel chip collects the a digital signal of the charge profile which allows us to determine the relative z coordinate of the scattering event

Analysis Script (sample)

- Analysis script generates a time-averaged TPC gain vs. time plot (in digitized units of charge per length). These two plots (and two others not shown) are generated for each TPC going through acceptance testing
 - Each data point in the upper plot corresponds to the average sum_ToT/length (gain) over a 30 minute time interval
 - We use an exponential fit of the form below to elucidate some performance criteria Residuals between data

A represents nominal max gain B represents exponential time constant, τ (time it

takes to reach (1 - 1/e) of

10/8/201 max gain)

Residuals between data and fit for gain vs time plot with $t > 3\tau$ used as a comparative measurement of gain stability between TPCs

TPC Tests 1.5 T Field at KEK

- TPCs delivered to KEK
- Observed tracks from a Po-210 source and B=1.5 T
- Recorded calibration samples

Test Beam Set Up

PXD, SVD, FANGS and CLAWS

• Combined Phase 2 operation demonstrated during the test beam

Phase 2 Test Beam Campaign

• Including services in (close to) final shape

cmarinas@uni-bonn.de

PERSY 1.2

July/August, VXD will be shipped to KEK

cmarinas@uni-bonn.de