

VXD Services & Space Issues

C. Kiesling, BPAC Focused Review on VXD, Oct. 15-17, 2017, KEK

Four critical areas:

BWD area: many cables, but space seems sufficient FWD area and chicane: Very tight, especially around the ARICH region FWD VXD endflange region: major difficulties, very careful planning necessary CDC endwalls: many cables/pipes to route, very little space (22 mm)

Services for VXD and Beampipe

compiled by C. Kiesling / T. Ackermann

VXD up to Dock boxes

	Component	Name	Material / shape	Diameter (mm)	# (BWD)	# (FWD)
1	Beampipe					
1.1	Be part	paraffine cooling lines	stainless steel, round	ø 6.0	1	1
1.2	crotched part	water cooling	stainless steel, round	ø 6.0	4	4
1.3	crotched part	BPMonitors	coax	ø 3.2	8	8
1.4	Bellows	water cooling	stainless steel, round	ø 6.0	8	8
1.5	2 PT 100	temp sensor (4-wire(coax	ø 0.8	8	8
1.6	4 Radiation monit.	diamonds	lemo coax	ø 1.7	8	8
1.7	leak search pipes			3.0	2	2
	total				39	39
2	PXD					
2.1	20 Half ladder	Power cables	multiwire + cover	ø 9.6	20	20
2.21	20 Half ladder	Signal cables	multiwire + cover	ø 9.4	20	20
2.22	20 Half ladder	CAT 7	multiwire + cover	ø 5.9	20	20
2.31	3 FOS (position)	fiber optic cable	cladded fibre, round	ø 1.0	4	4
2.32	4 FOS (environm.)	fiber optic cable	cladded fibre, round	1.0	8	0
2.41	1 Cooling Block	CO2 pipe (in)	ss (with insulation)	ø 2.6	2	2
2.42	1 Cooling Block	CO2 pipe (out)	ss (with insulation)	ø 4.0	2	2
2.5	1 Cooling Block	N2 cooling pipes	ss (with insulation)	ø 2.8	4	4
2.7	1 suction pipe		ss (with insulation)	ø 6.5	1	1

total

81

73

VXD Cable & Pipe Count

3	SVD					
3.1	ladders	signal/power cables	ribbon	32.0 x 1.0	222	122
3.2	6 Radiation monit.	diamonds	lemo coax	ø 1.7	12	12
3.3	End rings	CO2 pipe (in)	ss (with insulation)	ø 2.6	6	2
3.4	End rings	CO2 pipe (out)	ss (with insulation)	ø 4.0	6	2
3.5	Dry N2 in	cold dry vol.	ss (with insulation)	ø 2.8	0	4
3.6	1 Suction pipe	suction pipe (on end flange)	ss (with insulation)	ø 6.5	1	1
3.7	64 NTCs	temperature	twisted pair (ribon)	32.0 x 1.0	4	2
3.8	FOS	temp.		1.0	38	0
3.9	4 FOS	distance PXD / SVD		1.0	4	4
	total				293	149
4	VXD					
4.1	Common Ground bus		Cu (with insulation)	20.0 x 2.0 (?)	1	0
4.2	SVD Ground bus to doo	ks	Cu (with insulation)	ø 2.1	5	3
4.3	FOS	temp. (outer cover)		1.0	6	0
4.4	sniffing pipe	hum. meas. warm dry vol.	ss (with insulation)	6.0	1	1
5.1	2 pressure lines	RVC (on CDC wall)		ø 6.0	2	2
	total				15	6
	Total on CDC inner wall					267
5	RVC					
5.2	operation handle			8.0	2	2
5.3	EDI hooks			4.0	0	2
5.5	endoscope channel			10.0	2	2
	total				4	6

total

C. Kiesling, BPAC Focused Review on VXD, Oct. 15-17, 2017, KEK

Service Space around the VXD End Flange

Extremely narrow gap in the FWD regions between inner CDC wall and QCS: only 24 mm clearance -> need a special "patch panel cable cage"

For Phase 3: 270+ cables and pipes on each side AND conserve the "7 mm" rule further out in the gap between cables and QCS outer envelope

Phase 2 is much easier (much less cables), but good exercise for cables fixtures also needed for Phase 3

FWD: Extremely Tight Cable Arrangement

CO2/N2 Pipe Layout in VXD Area

C. Kiesling, BPAC Focused Review on VXD, Oct. 15-17, 2017, KEK

Cable / Pipe Layout in VXD Area

Beampipe Cooling FWD

PXD ctrl

PXD data

XD power **SVD** PXD patch panels very stiff power and Infiniband cables

FWD: Extremely Tight Cable Arrangement

C. Kiesling, BPAC Focused Review on VXD, Oct. 15-17, 2017, KEK

Patch Panel Cable Cage

No final design, just to demonstrate the principle

Patch Panel Cable Cage

Four critical areas:

BWD area: many cables, but space seems sufficient FWD area and chicane: Very tight, especially around the ARICH region FWD VXD endflange region: major difficulties, very careful planning necessary

CDC endwalls: many cables/pipes to route, very little space (22 mm)

Cable comb (arrange cables on perimeter)

BWD region with PXD / SVD / FANGS / CLAWS (TPC / He boxes not shown)

Cable comb (arrange cables on perimeter)

FWD region with PXD / SVD (Plume / TPC / He boxes not shown)

FWD CDC cable cage installed (inner spokes removed for B-Field Mapper installation)

BWD CDC cable cage installed

1646.6

minary Problematic: Dock Box area in the BWD region (for SWD) CDC wall in the BWD region Chicane in FWD

OC inner support ring.

Cable Routing on CDC BWD Side

Preview. Phase 3

- 1: PXD Power
- 2 : SVD LV
- 3 : diamond signals
- 4 : NTC services

Important:

PXD Power and
SVD LV must be
guided in φ on the
DBS ring
(no space for
crossing on the CDC
wall)
(FWD side is easier)

Cable Routing on CDC BWD Side

Preview. Phase 3

- 1: PXD Power
- 2 : SVD LV
- 3 : diamond signals
- 4 : NTC services
- 5 : SVD signal

Important:

PXD Power and
SVD LV must be
guided in φ on the
DBS ring
(no space for
crossing on the CDC
wall)
(FWD side is easier)

The VXD has a huge number of service lines (pipes and cables) to install: ~270 in FWD, ~420 in BWD

Service space very limited due to RVC and other Belle detectors (typically 22 mm gap for services available)

FWD area is particularly difficult: need special "cages" to keep allowed envelope

Many cables (and all pipes) are extremely stiff (e.g. power cables for PXD and SVD

Detailed cable plan worked out on CAD, but needs to be verified by the real detector environment. Phase 2 will be an excellent learning ground

