L_∞ algebras and conformal field theory

> Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_{∞} in 2d CFT

L_∞ algebras and conformal field theory

Matthias Traube¹

¹Max Planck Institut für Physik & Ludwig Maximilians Universität München

IMPRS Application Workshop, Nov. 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What?

 L_{∞} algebras and conformal field theory

> Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_{∞} in 2d CFT Two dimensional conformal field theory with consistent extended $\mathcal W\text{-symmetry}\Leftrightarrow\mathsf{Theory}\ \mathsf{has}\ \mathsf{L}_\infty$ symmetry

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

L_∞ algebras and conformal field theory

Matthias Traube

Symmetries ir physics

Symmetries in the Standard Model String theory Symmetries underlying string theory

2d conforma field theory

 L_{∞} in 2d CFT

1 Symmetries in physics

- Symmetries in the Standard Model
- String theory
- Symmetries underlying string theory

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2 2d conformal field theory

3 L_∞ in 2d CFT

Outline

L_∞ algebras and conformal field theory

Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying string theory

2d conforma field theory

 L_{∞} in 2d CFT

1 Symmetries in physics

- Symmetries in the Standard Model
- String theory
- Symmetries underlying string theory

2 2d conformal field theory

3 L_{∞} in 2d CFT

Symmetries in physics

Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_{∞} in 2d CFT

• Why should we care about symmetries at all?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Symmetries in physics

 L_{∞} algebras and conformal field theory

> Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_{∞} in 2d CFT Why should we care about symmetries at all?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 \Rightarrow Symmetries constrain physical theories!

Outline

L_∞ algebras and conformal field theory

> Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying string theory

2d conforma field theory

 L_{∞} in 2d CFT

1 Symmetries in physics

Symmetries in the Standard Model

String theory

Symmetries underlying string theory

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2 2d conformal field theory

3 L_∞ in 2d CFT

L_∞ algebras and conformal field theory
Matthias Traube
Symmetries in physics
Symmetries in the Standard Model String theory

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

L_∞ algebras and conformal field theory

> Matthias Traube

Symmetries ir physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_{∞} in 2d CFT Unification of Special Relativity and Quantum Mechanics

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

L_{∞} i	algebras
and co	onforma
field	theory

Matthias Traube

Symmetries ir physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_{∞} in 2d CFT Unification of Special Relativity and Quantum Mechanics

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Global Poincaré invariance

→ Action for Standard Model is Poincaré and gauge invariant.

- → Action for Standard Model is Poincaré and gauge invariant.
 - Standard Model is not enough, as it doesn't include General Relativity.

Outline

L_{∞} algebras and conformal field theory

Matthias Traube

Symmetries ir physics

Symmetries in the Standard Model String theory

Symmetries underlying string theory

2d conforma field theory

 L_{∞} in 2d CFT

1 Symmetries in physics

Symmetries in the Standard Model

String theory

Symmetries underlying string theory

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2 2d conformal field theory

3 L_∞ in 2d CFT

C	
String	theory
Jung	
0	

L_∞ algebras and conformal field theory
Matthias Traube
the Standard Model String theory

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

 L_{∞} algebras and conformal field theory

> Matthias Traube

Symmetries in physics

Symmetries in the Standard Model

String theory

Symmetries underlying strin theory

2d conforma field theory

 L_{∞} in 2d CFT Unification of General Relativity and Quantum Mechanics

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

L_∞ algebras and conformal field theory

Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory

Symmetries underlying string theory

2d conforma field theory

 L_{∞} in 2d CFT

1 Symmetries in physics

Symmetries in the Standard ModelString theory

Symmetries underlying string theory

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2 2d conformal field theory

3 L_∞ in 2d CFT

L_∞ algebras and conformal field theory
Matthias Traube
the Standard Model String theory
underlying string theory
field theory
L _∞ in 2d CFT

 L_{∞} algebras and conformal field theory

> Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory

Symmetries underlying string theory

2d conforma field theory

 L_{∞} in 2d CFT • What are the symmetries underlying string theory?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

L_∞ algebras and conformal field theory

> Matthias Traube

Symmetries in physics

Symmetries ir the Standard Model String theory

Symmetries underlying string theory

2d conforma field theory

 L_{∞} in 2d CFT

- What are the symmetries underlying string theory?
- Usually world sheet approach with no spacetime action

ightarrow Hard to unravel symmetries of the theory

L_∞ algebras and conformal field theory

> Matthias Traube

Symmetries ir physics

Symmetries in the Standard Model String theory

Symmetries underlying string theory

2d conforma field theory

 L_{∞} in 2d CFT

- What are the symmetries underlying string theory?
- Usually world sheet approach with no spacetime action

ightarrow Hard to unravel symmetries of the theory

Idea: Since there is no spacetime action, use scattering diagrams to learn something.

L_∞ algebras and conformal field theory

> Matthias Traube

Symmetries ir physics

Symmetries in the Standard Model String theory

Symmetries underlying string theory

2d conforma field theory

 L_{∞} in 2d CFT

- What are the symmetries underlying string theory?
- Usually world sheet approach with no spacetime action
- \rightarrow Hard to unravel symmetries of the theory

Idea: Since there is no spacetime action, use scattering diagrams to learn something.

Matthias Traube

Symmetries in physics

Symmetries ir the Standard Model String theory

Symmetries underlying string theory

2d conforma field theory

 L_{∞} in 2d CFT

 Get all possible diagrams from gluing "pair of pants" and cylinder

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Matthias Traube

- Symmetries in physics
- Symmetries in the Standard Model String theory

Symmetries underlying string theory

2d conforma field theory

 L_{∞} in 2d CFT

 Get all possible diagrams from gluing "pair of pants" and cylinder

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

 $\rightarrow\,$ Symmetry in gluing \Rightarrow Loop L_∞ algebra

Matthias Traube

- Symmetries in physics
- Symmetries in the Standard Model String theory

Symmetries underlying string theory

2d conforma field theory

 L_{∞} in 2d CFT

 Get all possible diagrams from gluing "pair of pants" and cylinder

イロト 不得 トイヨト イヨト

-

- $\rightarrow\,$ Symmetry in gluing \Rightarrow Loop L_∞ algebra
 - Gluing together only tree diagrams \Rightarrow L_{∞} algebra

Matthias Traube

- Symmetries in physics
- Symmetries in the Standard Model String theory

Symmetries underlying string theory

2d conforma field theory

 L_{∞} in 2d CFT

- Get all possible diagrams from gluing "pair of pants" and cylinder
- $\rightarrow\,$ Symmetry in gluing \Rightarrow Loop L_∞ algebra
 - \blacksquare Gluing together only tree diagrams \Rightarrow \textbf{L}_{∞} algebra
 - $\hfill\blacksquare$ Use the L_∞ algebra to write down a spacetime action for string theory
- $\rightarrow\,$ Classical Closed Bosonic String Field Theory action, which has $L_\infty\,\,gauge\,\,symmetry$

Matthias Traube

- Symmetries in physics
- Symmetries in the Standard Model String theory

Symmetries underlying string theory

2d conforma field theory

 L_{∞} in 2d CFT

- Get all possible diagrams from gluing "pair of pants" and cylinder
- $\rightarrow\,$ Symmetry in gluing \Rightarrow Loop L_∞ algebra
 - \blacksquare Gluing together only tree diagrams \Rightarrow \textbf{L}_{∞} algebra
 - $\hfill\blacksquare$ Use the L_∞ algebra to write down a spacetime action for string theory
- $\rightarrow\,$ Classical Closed Bosonic String Field Theory action, which has $L_\infty\,\,gauge\,\,symmetry$
 - \blacksquare L_∞ algebra is generalization of Lie algebra

Outline

L_∞ algebras and conformal field theory

Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conformal field theory

 L_{∞} in 2d CFT

Symmetries in physics

- Symmetries in the Standard Model
- String theory
- Symmetries underlying string theory

2 2d conformal field theory

3 L_{∞} in 2d CFT

 L_{∞} algebras and conformal field theory

> Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conformal field theory

 L_{∞} in 2d CFT Two dimensional field theory which is invariant under all angle preserving maps.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

L_∞ algebras and conformal field theory

> Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conformal field theory

 L_{∞} in 2d CFT Two dimensional field theory which is invariant under all angle preserving maps.

イロト 不得 トイヨト イヨト

3

 L_{∞} algebras and conformal field theory

> Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conformal field theory

 L_{∞} in 2d CFT

 Two dimensional field theory which is invariant under all angle preserving maps.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

 Conformal transformations are generated by energy-momentum tensor (spin 2)

 L_{∞} algebras and conformal field theory

> Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conformal field theory

 L_{∞} in 2d CFT

 Two dimensional field theory which is invariant under all angle preserving maps.

- Conformal transformations are generated by energy-momentum tensor (spin 2)
- Add symmetries generated by a spin 3 field W₃, a spin 4 field W₄,...
2d conformal field theory

 L_{∞} algebras and conformal field theory

> Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conformal field theory

 L_{∞} in 2d CFT

 Two dimensional field theory which is invariant under all angle preserving maps.

- Conformal transformations are generated by energy-momentum tensor (spin 2)
- Add symmetries generated by a spin 3 field W₃, a spin 4 field W₄,...
- Upon crossing symmetry for the transformations one gets 2d CFT with additional W₃, W₄,... symmetry

Outline

L_∞ algebras and conformal field theory

Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_{∞} in 2d CFT

Symmetries in physics

- Symmetries in the Standard Model
- String theory
- Symmetries underlying string theory

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2 2d conformal field theory

3 L_∞ in 2d CFT

Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries

theory

2d conforma field theory

 L_∞ in 2d CFT

$\blacksquare\ L_\infty$ symmetry in classical Yang-Mills gauge theory, Einstein gravity

(O.Hohm, B.Zwiebach arXiv:1701.08824)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_{∞} in 2d CFT

 $\blacksquare\ L_\infty$ symmetry in classical Yang-Mills gauge theory, Einstein gravity

(O.Hohm, B.Zwiebach arXiv:1701.08824)

1) Constraints for classical field theory with W_N -symmetry are satisfied $\Leftrightarrow W_N$ -theory has L_∞ symmetry

(R.Blumenhagen, M.Fuchs, MT JHEP07(2017)060)

Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying string theory

2d conforma field theory

 L_{∞} in 2d CFT

 $\blacksquare\ L_\infty$ symmetry in classical Yang-Mills gauge theory, Einstein gravity

(O.Hohm, B.Zwiebach arXiv:1701.08824)

1) Constraints for classical field theory with W_N -symmetry are satisfied $\Leftrightarrow W_N$ -theory has L_∞ symmetry

(R.Blumenhagen, M.Fuchs, MT JHEP07(2017)060)

2) Constraints for quantum field theory with W_N -symmetry are satisfied $\Leftrightarrow W_N$ -theory has Quantum L_∞ symmetry (R.Blumenhagen, M.Fuchs, MT JHEP10(2017)163)

Outlook

 L_{∞} algebras and conformal field theory

> Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strir

2d conforma field theory

 L_∞ in 2d CFT

\blacksquare Relation of Quantum L_∞ to String theory (loop $L_\infty)? \to$ global vs. local

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Outlook

L_∞ algebras and conformal field theory

Matthias Traube

Symmetries ir physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_∞ in 2d CFT

- \blacksquare Relation of Quantum L_∞ to String theory (loop $L_\infty)? \to$ global vs. local
- \blacksquare The role of L_∞ in String theory? Describes e.g. R-flux/ octonionian algebra

(O.Hohm, V.Kupriyanov, D.Lüst, MT arXiv:1709.10004)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outlook

L_∞ algebras and conformal field theory

Matthias Traube

Symmetries ir physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_{∞} in 2d CFT

- \blacksquare Relation of Quantum L_∞ to String theory (loop $L_\infty)? \to$ global vs. local
- \blacksquare The role of L_∞ in String theory? Describes e.g. R-flux/ octonionian algebra

(O.Hohm, V.Kupriyanov, D.Lüst, MT arXiv:1709.10004)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 L_{∞} algebras and conformal field theory

> Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strin

2d conforma field theory

 L_∞ in 2d CFT

Gauge field A in the adjoint representation

L_∞ algebras and conformal field theory

> Matthias Traube

Symmetries ir physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_{∞} in 2d CFT

- Gauge field A in the adjoint representation
- infinitesimal transformation: $\delta_{\lambda} A = d\lambda + [A, \lambda]$

L_∞ algebras and conformal field theory

> Matthias Traube

Symmetries ir physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_{∞} in 2d CFT

- Gauge field A in the adjoint representation
- infinitesimal transformation: $\delta_{\lambda} A = d\lambda + [A, \lambda]$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Gauge algebra closes:

L_∞ algebras and conformal field theory

Matthias Traube

- Symmetries ir physics
- Symmetries in the Standard Model String theory Symmetries underlying strin theory
- 2d conforma field theory

 L_∞ in 2d CFT

- Gauge field A in the adjoint representation
- infinitesimal transformation: $\delta_{\lambda} A = d\lambda + [A, \lambda]$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Gauge algebra closes:

$$[\delta_{\lambda_1}, \delta_{\lambda_2}] = \delta_{[\lambda_1, \lambda_2]}$$

L_∞ algebras and conformal field theory

> Matthias Traube

Symmetries ir physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_{∞} in 2d CFT

- Gauge field A in the adjoint representation
- infinitesimal transformation: $\delta_{\lambda} A = d\lambda + [A, \lambda]$
- Gauge algebra closes:

$$\begin{bmatrix} \delta_{\lambda_1}, \delta_{\lambda_2} \end{bmatrix} = \delta_{[\lambda_1, \lambda_2]} \quad \Rightarrow \quad \sum_{Jacobi} \quad \sum_{cycl} \begin{bmatrix} \delta_{\lambda_1}, \begin{bmatrix} \delta_{\lambda_2}, \delta_{\lambda_3} \end{bmatrix} \end{bmatrix} = \mathbf{0}$$

L_∞ algebras and conformal field theory

> Matthias Traube

Symmetries ir physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_{∞} in 2d CFT

- Gauge field A in the adjoint representation
- infinitesimal transformation: $\delta_{\lambda} A = d\lambda + [A, \lambda]$
- Gauge algebra closes:

$$\begin{bmatrix} \delta_{\lambda_1}, \delta_{\lambda_2} \end{bmatrix} = \delta_{[\lambda_1, \lambda_2]} \quad \stackrel{\Rightarrow}{\Rightarrow} \quad \sum_{cycl} \begin{bmatrix} \delta_{\lambda_1}, \begin{bmatrix} \delta_{\lambda_2}, \delta_{\lambda_3} \end{bmatrix} \end{bmatrix} = 0$$

Rewrite equations:

L_∞ algebras and conformal field theory

> Matthias Traube

Symmetries ir physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_{∞} in 2d CFT

- Gauge field A in the adjoint representation
 - infinitesimal transformation: $\delta_{\lambda} A = d\lambda + [A, \lambda]$
 - Gauge algebra closes:

$$\begin{bmatrix} \delta_{\lambda_1}, \delta_{\lambda_2} \end{bmatrix} = \delta_{[\lambda_1, \lambda_2]} \quad \underset{Jacobi}{\Rightarrow} \quad \sum_{cvcl} \begin{bmatrix} \delta_{\lambda_1}, \begin{bmatrix} \delta_{\lambda_2}, \delta_{\lambda_3} \end{bmatrix} \end{bmatrix} = 0$$

Rewrite equations:

 $\delta_{\lambda} A = \ell_1(\lambda) + \ell_2(\lambda, A),$

L_∞ algebras and conformal field theory

> Matthias Traube

Symmetries ir physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_{∞} in 2d CFT

- Gauge field A in the adjoint representation
- infinitesimal transformation: $\delta_{\lambda} A = d\lambda + [A, \lambda]$
- Gauge algebra closes:

$$\begin{bmatrix} \delta_{\lambda_1}, \delta_{\lambda_2} \end{bmatrix} = \delta_{[\lambda_1, \lambda_2]} \quad \underset{Jacobi}{\Rightarrow} \quad \sum_{cycl} \begin{bmatrix} \delta_{\lambda_1}, \begin{bmatrix} \delta_{\lambda_2}, \delta_{\lambda_3} \end{bmatrix} \end{bmatrix} = 0$$

Rewrite equations:

$$\delta_{\lambda} A = \ell_1(\lambda) + \ell_2(\lambda, A), \quad [\delta_{\lambda_1}, \delta_{\lambda_2}] = \delta_{-\ell_2(\lambda_1, \lambda_2)}$$

 L_{∞} algebras and conformal field theory

> Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strir

2d conforma field theory

 L_∞ in 2d CFT

Self-interacting massless spin 3 field with consistent guage algebra?

 L_{∞} algebras and conformal field theory

> Matthias Traube

Symmetries ir physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_∞ in 2d CFT

- Self-interacting massless spin 3 field with consistent guage algebra?
- \rightarrow Gauge algebra does not close in Lie algebra!

(BBvD '85)

 L_{∞} algebras and conformal field theory

> Matthias Traube

Symmetries ir physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_∞ in 2d CFT

- Self-interacting massless spin 3 field with consistent guage algebra?
- \rightarrow Gauge algebra does not close in Lie algebra!

(BBvD '85)

Bosonic closed string field theory

(B.Zwiebach '92)

 L_{∞} algebras and conformal field theory

> Matthias Traube

Symmetries i physics

Symmetries in the Standard Model String theory Symmetries underlying string theory

2d conforma field theory

 L_{∞} in 2d CFT

- Self-interacting massless spin 3 field with consistent guage algebra?
- \rightarrow Gauge algebra does not close in Lie algebra!

(BBvD '85)

Bosonic closed string field theory

(B.Zwiebach '92)

$$\begin{split} \delta_{\Lambda} \Phi &\sim \ell_1(\Lambda) + \ell_2(\Lambda, \Phi) + \ell_3(\Lambda, \Phi, \Phi) + \ell_4(\Lambda, \Phi^3) + \dots \\ [\delta_{\Lambda_1}, \delta_{\Lambda_2}] &\sim \delta_{-\ell_2(\Lambda_1, \Lambda_2) - \ell_3(\Lambda_1, \Lambda_2, \Phi) - \ell_4(\Lambda_1, \Lambda_2, \Phi, \Phi) + \dots} \end{split}$$

 L_{∞} algebras and conformal field theory

> Matthias Traube

Symmetries i physics

Symmetries in the Standard Model String theory Symmetries underlying string theory

2d conforma field theory

 L_{∞} in 2d CFT

- Self-interacting massless spin 3 field with consistent guage algebra?
- \rightarrow Gauge algebra does not close in Lie algebra!

(BBvD '85)

Bosonic closed string field theory

(B.Zwiebach '92)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

$$\begin{split} \delta_{\Lambda} \Phi &\sim \ell_1(\Lambda) + \ell_2(\Lambda, \Phi) + \ell_3(\Lambda, \Phi, \Phi) + \ell_4(\Lambda, \Phi^3) + \dots \\ [\delta_{\Lambda_1}, \delta_{\Lambda_2}] &\sim \delta_{-\ell_2(\Lambda_1, \Lambda_2) - \ell_3(\Lambda_1, \Lambda_2, \Phi) - \ell_4(\Lambda_1, \Lambda_2, \Phi, \Phi) + \dots} \end{split}$$

 \Rightarrow L_{∞} algebra

 L_∞ algebra

Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_∞ in 2d CFT

Definition

A L_{∞} algebra consists of a graded vector space X and multilinear maps $\{\ell_n\}_{n\geq 1}$, $\ell_n: \underbrace{X\otimes\cdots\otimes X}_n \to X$, satisfying

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

generalized Jacobi identities.

Classical $\mathcal W$ algebras

L_∞ algebras and conformal field theory
Matthias Traube
L_{∞} in 2d CFT

(ロ)、(型)、(E)、(E)、 E) の(の)

 L_{∞} algebras and conformal field theory

> Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strir

2d conforma field theory

 L_∞ in 2d CFT

• Classical: $\hbar \rightarrow 0$ in quantum CFT

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 L_{∞} algebras and conformal field theory

> Matthias Traube

Symmetries ir physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_∞ in 2d CFT

- Classical: $\hbar \rightarrow 0$ in quantum CFT
- Virasoro algebra: Energy momentum tensor *T*, spin 2

L_∞ algebras and conformal field theory

Matthias Traube

- Symmetries in physics
- Symmetries in the Standard Model String theory Symmetries underlying strin theory
- 2d conforma field theory

 L_∞ in 2d CFT

- Classical: $\hbar \rightarrow 0$ in quantum CFT
- Virasoro algebra: Energy momentum tensor *T*, spin 2
- W_N algebra: Generators $\{T, W_3, \ldots, W_N\}$, W_i spin *i* field

Classical $\mathcal W$ algebras

L_∞ algebras and conformal field theory

Matthias Traube

- Symmetries in physics
- Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_{∞} in 2d CFT

- Classical: $\hbar \rightarrow 0$ in quantum CFT
- Virasoro algebra: Energy momentum tensor *T*, spin 2
- W_N algebra: Generators $\{T, W_3, \ldots, W_N\}$, W_i spin *i* field

Theorem (classical)

 $\{T, W_3, \ldots, W_N\}$ form a classical W_N algebra iff their symmetry transformations form a L_∞ algebra.

(R.Blumenhagen, M.Fuchs, MT JHEP07(2017)060)

L_{∞} algebras and conformal field theory

Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_{∞} in 2d CFT

Classical \mathcal{W}_3 symmetry transformations:

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

L_{∞} algebras and conformal field theory

Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_∞ in 2d CFT

Classical \mathcal{W}_3 symmetry transformations: $\delta_{\eta}W = \frac{c}{360}\partial^5\eta + \alpha \left(\frac{1}{6}\partial^3\eta T + \frac{1}{4}\partial^2\eta\partial T + \frac{3}{20}\partial\eta\partial^2 T + \frac{1}{30}\eta\partial^3 T\right) + \beta \left(\partial\eta(TT) + \frac{1}{2}\eta\partial(TT)\right)$

L_{∞} algebras and conformal field theory

Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_{∞} in 2d CFT

Classical \mathcal{W}_3 symmetry transformations: $\delta_{\eta}W = \frac{c}{360}\partial^5\eta + \alpha \left(\frac{1}{6}\partial^3\eta T + \frac{1}{4}\partial^2\eta\partial T + \frac{3}{20}\partial\eta\partial^2 T + \frac{1}{30}\eta\partial^3 T\right) + \beta \left(\partial\eta(TT) + \frac{1}{2}\eta\partial(TT)\right)$ $= \ell_1^W(\eta) + \ell_2^W(\eta, T) - \frac{1}{2}\ell_3^W(\eta, T, T)$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

L_{∞} algebras and conformal field theory

Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_∞ in 2d CFT

Classical \mathcal{W}_3 symmetry transformations: $\delta_{\eta}W = \frac{c}{360}\partial^5\eta + \alpha \left(\frac{1}{6}\partial^3\eta T + \frac{1}{4}\partial^2\eta\partial T + \frac{3}{20}\partial\eta\partial^2 T + \frac{1}{30}\eta\partial^3 T\right) + \beta \left(\partial\eta(TT) + \frac{1}{2}\eta\partial(TT)\right)$ $= \ell_1^W(\eta) + \ell_2^W(\eta, T) - \frac{1}{2}\ell_3^W(\eta, T, T)$ $\delta_{\varepsilon}T = \ell_1^T(\varepsilon) + \ell_2^T(\varepsilon, T)$ $\delta_{\eta}T = \ell_2^T(\eta, W)$ $\delta_{\varepsilon}W = \ell_2^W(\varepsilon, W)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 L_{∞} algebras and conformal field theory

> Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_∞ in 2d CFT

$\rightarrow\,$ Demand closure

$$[\delta_{\boldsymbol{\varepsilon}_1}, \delta_{\boldsymbol{\varepsilon}_2}] = \delta_{-\ell_2(\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2) - \ell_3(\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2, \mathbf{W}) + \frac{1}{2}\ell_4(\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2, \mathbf{W}, \mathbf{W}) + \dots}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 L_{∞} algebras and conformal field theory

> Matthias Traube

Symmetries i physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_∞ in 2d CFT

$\begin{array}{l} \rightarrow \mbox{ Demand closure} \\ [\delta_{\pmb{\varepsilon}_1}, \delta_{\pmb{\varepsilon}_2}] = \delta_{-\ell_2(\pmb{\varepsilon}_1, \pmb{\varepsilon}_2) - \ell_3(\pmb{\varepsilon}_1, \pmb{\varepsilon}_2, \pmb{\mathsf{W}}) + \frac{1}{2}\ell_4(\pmb{\varepsilon}_1, \pmb{\varepsilon}_2, \pmb{\mathsf{W}}, \pmb{\mathsf{W}}) + \dots} \end{array}$

• E.g.
$$[\delta_{\eta_1}, \delta_{\eta_2}] = \delta_{-\ell_2(\eta_1, \eta_2) - \ell_3(\eta_1, \eta_2, T)}$$

 L_{∞} algebras and conformal field theory

> Matthias Traube

Symmetries i physics

Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_∞ in 2d CFT

$\begin{array}{l} \rightarrow \mbox{ Demand closure} \\ [\delta_{\pmb{\varepsilon}_1}, \delta_{\pmb{\varepsilon}_2}] = \delta_{-\ell_2(\pmb{\varepsilon}_1, \pmb{\varepsilon}_2) - \ell_3(\pmb{\varepsilon}_1, \pmb{\varepsilon}_2, \pmb{\mathsf{W}}) + \frac{1}{2}\ell_4(\pmb{\varepsilon}_1, \pmb{\varepsilon}_2, \pmb{\mathsf{W}}, \pmb{\mathsf{W}}) + \dots} \end{array}$

• E.g.
$$[\delta_{\eta_1}, \delta_{\eta_2}] = \delta_{-\ell_2(\eta_1, \eta_2) - \ell_3(\eta_1, \eta_2, T)}$$

•
$$L_{\infty}$$
 relations fix $\alpha = 2, \ \beta = \frac{32}{5c}$

Quantum \mathcal{W}_3 algebra

L_{∞} algebras and conformal field theory
Matthias Traube
L_{∞} in 2d CFT

(ロ)、(型)、(E)、(E)、 E) の(の)
L_{∞} algebras and conformal field theory

> Matthias Traube

Symmetries in physics

Symmetries in the Standard Model String theory Symmetries underlying strin

2d conforma field theory

 L_∞ in 2d CFT

• Generators $\{T, W\}$

L_∞ algebras and conformal field theory

Matthias Traube

- Symmetries ir physics
- Symmetries in the Standard Model String theory Symmetries underlying strin theory
- 2d conforma field theory

 L_∞ in 2d CFT

- Generators $\{T, W\}$
- Symmetry transformations get correction terms proportional to ħ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

L_∞ algebras and conformal field theory

Matthias Traube

- Symmetries ir physics
- Symmetries in the Standard Model String theory Symmetries underlying strin theory
- 2d conforma field theory

 L_∞ in 2d CFT

- Generators $\{T, W\}$
- Symmetry transformations get correction terms proportional to \hbar
- \blacksquare Specify a product between operators \rightarrow Normal ordered product in 2D CFT

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

L_∞ algebras and conformal field theory

Matthias Traube

- Symmetries in physics
- Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_∞ in 2d CFT

- Generators $\{T, W\}$
- \blacksquare Symmetry transformations get correction terms proportional to \hbar
- \blacksquare Specify a product between operators \rightarrow Normal ordered product in 2D CFT
- $\Rightarrow\,$ Cross relations among the fundamental identities of the $L_\infty\,$ algebra

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

L_{∞} algebras and conformal field theory

Matthias Traube

- Symmetries in physics
- Symmetries in the Standard Model String theory Symmetries underlying strin theory

2d conforma field theory

 L_∞ in 2d CFT

- Generators $\{T, W\}$
- Symmetry transformations get correction terms proportional to \hbar
- \blacksquare Specify a product between operators \rightarrow Normal ordered product in 2D CFT
- $\Rightarrow\,$ Cross relations among the fundamental identities of the $L_\infty\,$ algebra

 \Rightarrow Quantum L_{∞} algebra (R.Blumenhagen, M.Fuchs, MT JHEP10(2017)163)