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The Problem of Moduli Stabilization
Motivation from the perspective of string phenomenology

String phenomenology:

String Theory Observable Physics

D = 10
Dimensional Reduction−−−−−−−−−−−−−−−→

D = 4

Traditional string compactifications: Vacuum degeneracy gives rise
to large number of massless scalar fields (moduli) in effective
four-dimensional theory

→ obvious contradiction to experiments

Philip Betzler Application of Double Field Theory to Flux Compactifications



Introduction and Motivation
Research part

The Problem of Moduli Stabilization
Flux Compactifications
Double Field Theory (DFT)

The Problem of Moduli Stabilization
Motivation from the perspective of string phenomenology

String phenomenology:

String Theory Observable Physics

D = 10
Dimensional Reduction−−−−−−−−−−−−−−−→

D = 4

Traditional string compactifications: Vacuum degeneracy gives rise
to large number of massless scalar fields (moduli) in effective
four-dimensional theory

→ obvious contradiction to experiments

Philip Betzler Application of Double Field Theory to Flux Compactifications



Introduction and Motivation
Research part

The Problem of Moduli Stabilization
Flux Compactifications
Double Field Theory (DFT)

Flux Compactifications
Going beyond differential geometry

Idea: Allow for non-vanishing background fields on internal
manifold, e.g. for type II NS-NS two-form B

Hflux = 〈dBint〉

Non-zero flux of the fields gives rise to scalar potential depending on
moduli

→ moduli become massive

Problem: Full moduli stabilization requires “non-geometric” fluxes

Hijk
NS-NS flux

Ti←−−→ F i
jk

geometric

Tj←−−→ Qk
ij

non-geometric

Tk←−−→ R ijk

non-geometric
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Double Field Theory (DFT)
Enhancing point particles with stringy features

Double number of coordinates by adding “winding coordinates” x̃i
conjugate to winding number p̃i (cf. x i ↔ pi)

X I =
(
x̃i , x i)

, i = 1, . . .D; I = 1, . . . 2D
P I =

(
p̃i , pi)

Enhance point particles with “stringy” features and enable them to
transform under T-duality

→ D = 10 SUGRAs arise as solutions to “strong constraint”

→ T-duality transformations as rotations of ten-dimensional
“physical section” through doubled spacetime
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Overview
Previous works and objectives

Starting point: “flux formulation” of DFT

Compactification of purely internal contribution on CY3 gives rise to
scalar potential of N = 2 gauged SUGRA [Blumenhagen, Font,
Plauschinn ’15]

Objective: Relax simplifying assumptions (constant and traceless
fluxes, no dilaton fluxes), generalize to full action
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Dimensional Reduction (1)
Type II DFT on a Calabi-Yau three-fold

Starting point: Bosonic part of type II DFT action

SNS-NS = 1
2

∫
d20Xe−2d

[
F̂M̂N̂P̂ F̂M̂′N̂′P̂′

(
1
4H

M̂M̂′ηN̂N̂′ηP̂P̂′− 1
12H

M̂M̂′HN̂N̂′HP̂P̂′

− 1
6η

M̂M̂′ηN̂N̂′ηP̂P̂′
)

+F̂M̂F̂M̂′
(
ηM̂M̂′−HM̂M̂′

)]
SR-R = 1

2

∫
d20X

(
− 1

2

∑
n|Ĝn|2

)
, Ĝn = (−1)b n

2c?Ĝn,
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Dimensional Reduction (2)
Handling the DFT Action

Step 1: Separate kinetic terms and scalar potential

Step 2: Reformulate action in terms of twisted differential

D = d − H ∧ −F ◦ − Q • −Rx −Y ∧ −ZH︸ ︷︷ ︸
gen. dilaton

with, e.g.,

Q• : Ωp (CY3) −→ Ωp−1 (CY3)

ωp 7→ 1
2!

Qi
jk dx i ∧ ιj ∧ ιk ∧ ωp

Step 3: Expand in terms of cohomology basis, integrate equations of
motion and duality constraints over internal space
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Effective Four-Dimensional Action
Partially dualized N = 2 gauged SUGRA

SIIA =

∫
1
2 R(4)?1(4)−dφ∧?dφ− e−4φ

4 dB∧?dB−gijdti∧?dtj−g
ab
dza∧?dz̄b

+ 1
2 ImNIJF

J
2∧?F

J
2+ 1

2ReNIJF
J
2∧F

J
2+ 1

2 ∆̃ABdC
A
0 ∧?dC

B
0

+ 1
2 (∆−1)IJ

(
d(ÕI ÃCA2 )+ÕI ACA0 dB

)
∧?
(
d(ÕJ B̃C

B
2 )+ÕJ BC

B
0 dB
)

+

(
d(ÕI ÃCA2 )+ÕI ACA0 dB

)
∧(e2φ(∆−1)IJ(OT )J

BMBCdC
C
0 )− 1

2 dB∧CA0 SABdC
B
0

−
(
ÕI ÃCA2−GIfluxB

)
∧
(
dCI1+ 1

2 Õ
I
B̃C

B
2−

1
2 G

I
fluxB
)

+Vscalar?1(4)

Vscalar = e−2φ
2 V I(OT )I

AMABO
B
JV J+ e−2φ

2 WA(ÕT )A
INIJÕ

J
BWB

− e−2φ
4K WASACO

C
I(V IV J

+V IV J)(OT )J
DSDBWB

+ e4φ
2

(
GIflux+ÕI

ACA0

)
NIJ
(
GJflux+ÕJ

BC
B
0

)
.
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Conclusion (1)

Consistency check: Type II DFT compactified on Calabi-Yau
three-fold gives rise to full four-dimensional action of N = 2
gauged SUGRA

DFT allows for description of non-constant background fluxes,
yielding the same effective four-dimensional action
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Conclusion (2)

Trace-terms and generalized dilaton fluxes

Fi = F m
mi + 2Yi , F i = Qm

mi + 2Z i

give rise to additional terms in flux matrices, e.g.

OA
I =

 −(f̃ Ai + ỹA
i

) (
q̃Ai + z̃Ai

)(
fAi + yAi

)
−
(

qAi + zAi
) 

→ Ten-dimensional origin of non-unimodular gaugings in N = 4
gauged SUGRA?
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Conclusion (3)

IIA↔ IIB Mirror Symmetry restored:

t i ↔ za, gij ↔ gab,

MAB ↔ NIJ, h1,1 ↔ h1,2,

V I ↔ W A, SIJ ↔ SAB

CI
n ↔ CA

n , GI
flux ↔ GA

flux,

OA
I ↔ ÕI

A.
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Outlook

DFT provides a useful framework to handle non-geometric flux
compactifications

Possibilities for further research: orientifold compactifications,
heterotic DFT, Exceptional Field Theory, ...
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End of Talk

Questions?
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