Application of Double Field Theory to Flux Compactifications

Philip Betzler

November 11, 2017

Philip Betzler Application of Double Field Theory to Flux Compactifications

Outline

Introduction and Motivation

- The Problem of Moduli Stabilization
- Flux Compactifications
- Double Field Theory (DFT)

2 Research part

- Overview
- Dimensional Reduction
- Results and Discussion
- Conclusion and Outlook

The Problem of Moduli Stabilization

Motivation from the perspective of string phenomenology

• String phenomenology:

• Traditional string compactifications: Vacuum degeneracy gives rise to large number of massless scalar fields (moduli) in effective four-dimensional theory

ightarrow obvious contradiction to experiments

医下口 医下

The Problem of Moduli Stabilization

Motivation from the perspective of string phenomenology

• String phenomenology:

- Traditional string compactifications: Vacuum degeneracy gives rise to large number of massless scalar fields (moduli) in effective four-dimensional theory
 - \rightarrow obvious contradiction to experiments

Flux Compactifications Going beyond differential geometry

• Idea: Allow for non-vanishing background fields on internal manifold, e.g. for type II NS-NS two-form *B*

 $H_{\mathrm{flux}} = \langle \mathrm{d}B_{\mathrm{int}} \rangle$

Non-zero flux of the fields gives rise to scalar potential depending on moduli

 \rightarrow moduli become massive

• Problem: Full moduli stabilization requires "non-geometric" fluxes

Flux Compactifications Going beyond differential geometry

• Idea: Allow for non-vanishing background fields on internal manifold, e.g. for type II NS-NS two-form *B*

 $H_{\mathrm{flux}} = \langle \mathrm{d}B_{\mathrm{int}} \rangle$

Non-zero flux of the fields gives rise to scalar potential depending on moduli

- \rightarrow moduli become massive
- Problem: Full moduli stabilization requires "non-geometric" fluxes

Double Field Theory (DFT)

Double Field Theory (DFT)

Enhancing point particles with stringy features

• Double number of coordinates by adding "winding coordinates" \tilde{x}_i conjugate to winding number \tilde{p}_i (cf. $x^i \leftrightarrow p^i$)

$$\begin{aligned} X^{I} &= \left(\tilde{x}_{i}, x^{i} \right) \\ P^{I} &= \left(\tilde{p}_{i}, p^{i} \right) \end{aligned}, \quad i = 1, \dots D; \quad I = 1, \dots 2D \end{aligned}$$

- Enhance point particles with "stringy" features and enable them to

くぼう くほう くほう

Double Field Theory (DFT) Enhancing point particles with stringy features

Double number of coordinates by adding "winding coordinates" x
_i conjugate to winding number p
_i (cf. xⁱ ↔ pⁱ)

$$egin{aligned} X' &= \left(ilde{x}_i, x^i
ight) \ P' &= \left(ilde{p}_i, p^i
ight) \end{aligned}$$
 , $i = 1, \ldots D;$ $I = 1, \ldots 2D$

• Enhance point particles with "stringy" features and enable them to transform under T-duality

 \rightarrow D=10 SUGRAs arise as solutions to "strong constraint"

 \rightarrow T-duality transformations as rotations of ten-dimensional "physical section" through doubled spacetime

Overview Dimensional Reduction Results and Discussion Conclusion and Outlook

• Starting point: "flux formulation" of DFT

• Compactification of purely internal contribution on CY_3 gives rise to scalar potential of $\mathcal{N}=2$ gauged SUGRA [Blumenhagen, Font, Plauschinn '15]

• Objective: Relax simplifying assumptions (constant and traceless fluxes, no dilaton fluxes), generalize to full action

くぼう くほう くほう

Overview Dimensional Reduction Results and Discussion Conclusion and Outlook

- Starting point: "flux formulation" of DFT
- Compactification of purely internal contribution on CY_3 gives rise to scalar potential of $\mathcal{N}=2$ gauged SUGRA [Blumenhagen, Font, Plauschinn '15]
- Objective: Relax simplifying assumptions (constant and traceless fluxes, no dilaton fluxes), generalize to full action

きょうきょう

Overview Dimensional Reduction Results and Discussion Conclusion and Outlook

- Starting point: "flux formulation" of DFT
- Compactification of purely internal contribution on CY_3 gives rise to scalar potential of $\mathcal{N} = 2$ gauged SUGRA [Blumenhagen, Font, Plauschinn '15]
- Objective: Relax simplifying assumptions (constant and traceless fluxes, no dilaton fluxes), generalize to full action

Overview Dimensional Reduction Results and Discussion Conclusion and Outlook

Dimensional Reduction (1) Type II DFT on a Calabi-Yau three-fold

• Starting point: Bosonic part of type II DFT action

$$\begin{split} S_{\rm NS-NS} &= \frac{1}{2} \int \mathrm{d}^{20} X e^{-2d} \Big[\\ &\hat{\mathcal{F}}_{\hat{M}\hat{N}\hat{P}} \hat{\mathcal{F}}_{\hat{M}'\hat{N}'\hat{P}'} \left(\frac{1}{4} \mathcal{H}^{\hat{M}\hat{M}'} \eta^{\hat{N}\hat{N}'} \eta^{\hat{P}\hat{P}'} - \frac{1}{12} \mathcal{H}^{\hat{M}\hat{M}'} \mathcal{H}^{\hat{N}\hat{N}'} \mathcal{H}^{\hat{P}\hat{P}'} \\ &- \frac{1}{6} \eta^{\hat{M}\hat{M}'} \eta^{\hat{N}\hat{N}'} \eta^{\hat{P}\hat{P}'} \Big) + \hat{\mathcal{F}}_{\hat{M}} \hat{\mathcal{F}}_{\hat{M}'} \left(\eta^{\hat{M}\hat{M}'} - \mathcal{H}^{\hat{M}\hat{M}'} \right) \Big] \end{split}$$

$$S_{\mathrm{R-R}} = \frac{1}{2} \int d^{20} X \left(-\frac{1}{2} \sum_{n} \left| \hat{\mathcal{G}}_{n} \right|^{2} \right), \qquad \hat{\mathcal{G}}_{n} = (-1)^{\left\lfloor \frac{n}{2} \right\rfloor} \star \hat{\mathcal{G}}_{n},$$

∃ ► < ∃ ►</p>

- T

э

Overview Dimensional Reduction Results and Discussion Conclusion and Outlook

Dimensional Reduction (2) Handling the DFT Action

• Step 1: Separate kinetic terms and scalar potential

• Step 2: Reformulate action in terms of twisted differential

$$\mathcal{D} = d - H \wedge -F \circ -Q \bullet -R_{\perp} \underbrace{-Y \wedge -Z \mathbf{V}}_{\text{gen. dilaton}}$$

with, e.g.,

$$\begin{array}{rcl} Q\bullet: & \Omega^{p}\left(CY_{3}\right) & \longrightarrow & \Omega^{p-1}\left(CY_{3}\right) \\ & \omega_{p} & \mapsto & \frac{1}{2!}Q_{I}^{jk} dx^{i} \wedge \iota_{j} \wedge \iota_{k} \wedge \omega_{p} \end{array}$$

• Step 3: Expand in terms of cohomology basis, integrate equations of motion and duality constraints over internal space

< ロ > < 同 > < 三 > < 三 >

Overview Dimensional Reduction Results and Discussion Conclusion and Outlook

Dimensional Reduction (2) Handling the DFT Action

- Step 1: Separate kinetic terms and scalar potential
- Step 2: Reformulate action in terms of twisted differential

$$\mathcal{D} = d - H \wedge -F \circ -Q \bullet -R_{\perp} \underbrace{-Y \wedge -Z \blacktriangledown}_{\text{gen. dilaton}}$$

with, e.g.,

$$\begin{array}{rccc} Q\bullet: & \Omega^{p}\left(CY_{3}\right) & \longrightarrow & \Omega^{p-1}\left(CY_{3}\right) \\ & \omega_{p} & \mapsto & \frac{1}{2!}Q_{i}^{jk} dx^{i} \wedge \iota_{j} \wedge \iota_{k} \wedge \omega_{p} \end{array}$$

• Step 3: Expand in terms of cohomology basis, integrate equations of motion and duality constraints over internal space

< ロ > < 同 > < 三 > < 三 >

Overview Dimensional Reduction Results and Discussion Conclusion and Outlook

Dimensional Reduction (2) Handling the DFT Action

- Step 1: Separate kinetic terms and scalar potential
- Step 2: Reformulate action in terms of twisted differential

$$\mathcal{D} = d - H \wedge -F \circ -Q \bullet -R_{\perp} \underbrace{-Y \wedge -Z \blacktriangledown}_{\text{gen. dilaton}}$$

with, e.g.,

$$\begin{array}{rccc} Q \bullet : & \Omega^{p} \left(CY_{3} \right) & \longrightarrow & \Omega^{p-1} \left(CY_{3} \right) \\ & \omega_{p} & \mapsto & \frac{1}{2!} Q_{i}^{jk} dx^{i} \wedge \iota_{j} \wedge \iota_{k} \wedge \omega_{p} \end{array}$$

• Step 3: Expand in terms of cohomology basis, integrate equations of motion and duality constraints over internal space

< ロ > < 同 > < 回 > < 回 > .

э

Overview Dimensional Reduction Results and Discussion Conclusion and Outlook

Effective Four-Dimensional Action Partially dualized $\mathcal{N} = 2$ gauged SUGRA

$$\begin{split} S_{\mathrm{IIA}} &= \int \frac{1}{2} R^{(4)} * \mathbf{1}^{(4)} - \mathrm{d}\phi \wedge * \mathrm{d}\phi - \frac{e^{-4\phi}}{4} \, \mathrm{d}B \wedge * \mathrm{d}B - g_{ij} \mathrm{d}^{ij} \wedge * \mathrm{d}t^{j} - g_{a\overline{b}} \mathrm{d}z^{a} \wedge * \mathrm{d}\overline{z}^{\overline{b}} \\ &+ \frac{1}{2} \mathrm{Im} \mathcal{N}_{IJ} F_{2}^{J} \wedge * F_{2}^{J} + \frac{1}{2} \mathrm{Re} \mathcal{N}_{IJ} F_{2}^{J} \wedge F_{2}^{J} + \frac{1}{2} \widetilde{\Delta}_{\mathbb{AB}} \mathrm{d}C_{0}^{\mathbb{A}} \wedge * \mathrm{d}C_{0}^{\mathbb{B}} \\ &+ \frac{1}{2} (\Delta^{-1})^{IJ} \left(\mathrm{d}(\widetilde{O}_{1\mathbb{A}} \widetilde{C}_{2}^{\mathbb{A}}) + \widetilde{O}_{1\mathbb{A}} C_{0}^{\mathbb{A}} \mathrm{d}B \right) \wedge * \left(\mathrm{d}(\widetilde{O}_{J\mathbb{B}} \widetilde{C}_{2}^{\mathbb{B}}) + \widetilde{O}_{J\mathbb{B}} C_{0}^{\mathbb{B}} \mathrm{d}B \right) \\ &+ \left(\mathrm{d}(\widetilde{O}_{1\mathbb{A}} \widetilde{C}_{2}^{\mathbb{A}}) + \widetilde{O}_{1\mathbb{A}} C_{0}^{\mathbb{A}} \mathrm{d}B \right) \wedge \left(e^{2\phi} (\Delta^{-1})^{IJ} (\mathcal{O}^{T})_{J} \mathbb{B}^{\mathbb{M}}_{\mathbb{BC}} \mathrm{d}C_{0}^{\mathbb{C}} \right) - \frac{1}{2} \mathrm{d}B \wedge C_{0}^{\mathbb{A}} S_{\mathbb{AB}} \mathrm{d}C_{0}^{\mathbb{B}} \\ &- \left(\widetilde{O}_{1\mathbb{A}} \widetilde{C}_{2}^{\mathbb{A}} - \mathsf{G}_{1\mathbb{H}} \mathrm{tux} B \right) \wedge \left(\mathrm{d}C_{1}^{I} + \frac{1}{2} \widetilde{\mathcal{O}}^{I}_{\mathbb{B}} \widetilde{C}_{2}^{\mathbb{B}} - \frac{1}{2} \mathsf{G}_{1\mathrm{Hux}}^{I} B \right) + V_{\mathrm{scalar}} \star \mathbf{1}^{(4)} \end{split}$$

$$\begin{split} V_{\rm scalar} &= \frac{e^{-2\phi}}{2} v^{\mathbb{I}}(\mathcal{O}^{\,\mathcal{T}})_{\mathbb{I}} \,^{\mathbb{A}}\mathbb{M}_{\mathbb{A}\mathbb{B}} \mathcal{O}^{\mathbb{B}}_{\,\mathbb{J}} v^{\mathbb{J}} + \frac{e^{-2\phi}}{2} w^{\mathbb{A}}(\widetilde{\mathcal{O}^{\,\mathcal{T}}})_{\mathbb{A}} \,^{\mathbb{I}}\mathbb{N}_{\mathbb{I}\mathbb{J}} \,\widetilde{\mathcal{O}}^{\,\mathbb{J}}_{\,\mathbb{B}} \overline{w}^{\mathbb{B}} \\ &- \frac{e^{-2\phi}}{4\mathcal{K}} w^{\mathbb{A}} S_{\mathbb{A}\mathbb{C}} \mathcal{O}^{\mathbb{C}}_{\,\mathbb{I}} \left(v^{\mathbb{I}} \overline{v}^{\mathbb{J}} + \overline{v}^{\mathbb{I}} v^{\mathbb{J}} \right) (\mathcal{O}^{\,\mathcal{T}})_{\mathbb{J}} \,^{\mathbb{D}} S_{\mathbb{D}\mathbb{B}} \overline{w}^{\mathbb{B}} \\ &+ \frac{e^{4\phi}}{2} \left(\mathsf{G}^{\mathbb{I}}_{\,\mathrm{flux}} + \widetilde{\mathcal{O}}^{\mathbb{I}}_{\,\mathbb{A}} \mathsf{C}^{\mathbb{A}}_{0} \right) \mathbb{N}_{\mathbb{I}\mathbb{J}} \left(\mathsf{G}^{\mathbb{J}}_{\,\mathrm{flux}} + \widetilde{\mathcal{O}}^{\mathbb{J}}_{\,\mathbb{B}} \mathsf{C}^{\mathbb{B}}_{0} \right). \end{split}$$

くぼう くほう くほう

э.

Overview Dimensional Reduction Results and Discussion Conclusion and Outlook

Conclusion (1)

- Consistency check: Type II DFT compactified on Calabi-Yau three-fold gives rise to full four-dimensional action of $\mathcal{N}=2$ gauged SUGRA
- DFT allows for description of non-constant background fluxes, yielding the same effective four-dimensional action

Philip Betzler Application of Double Field Theory to Flux Compactifications

くぼう くほう くほう

Overview Dimensional Reduction Results and Discussion Conclusion and Outlook

Conclusion (1)

- Consistency check: Type II DFT compactified on Calabi-Yau three-fold gives rise to full four-dimensional action of $\mathcal{N}=2$ gauged SUGRA
- DFT allows for description of non-constant background fluxes, yielding the same effective four-dimensional action

4 3 5 4 3 5 5

Overview Dimensional Reduction Results and Discussion Conclusion and Outlook

Conclusion (2)

• Trace-terms and generalized dilaton fluxes

$$\mathcal{F}_i = \mathcal{F}^m{}_{mi} + 2Y_i, \qquad \mathcal{F}^i = \mathcal{Q}_m{}^{mi} + 2Z^i$$

give rise to additional terms in flux matrices, e.g.

$$\mathcal{O}^{\mathbb{A}}_{\mathbb{I}} = \begin{pmatrix} -\left(\tilde{f}^{\mathsf{A}}_{i} + \tilde{y}^{\mathsf{A}}_{i}\right) & \left(\tilde{q}^{\mathsf{A}i} + \tilde{z}^{\mathsf{A}i}\right) \\ \left(f_{\mathsf{A}i} + y_{\mathsf{A}i}\right) & -\left(q_{\mathsf{A}}^{i} + z_{\mathsf{A}}^{i}\right) \end{pmatrix}$$

 \rightarrow Ten-dimensional origin of non-unimodular gaugings in $\mathcal{N}=4$ gauged SUGRA?

・ 回 ト ・ ヨ ト ・ ヨ ト

Overview Dimensional Reduction Results and Discussion Conclusion and Outlook

Conclusion (3)

 $\bullet~\mathrm{IIA}\leftrightarrow\mathrm{IIB}$ Mirror Symmetry restored:

ť	\leftrightarrow	<i>z</i> ^a ,	g _{ij}	\leftrightarrow	$g_{a\overline{b}},$
\mathcal{M}_{AB}	\leftrightarrow	$\mathcal{N}_{IJ},$	$h^{1,1}$	\leftrightarrow	$h^{1,2},$
$V^{\mathbb{I}}$	\leftrightarrow	$W^{\mathbb{A}},$	$S_{\mathbb{I}\mathbb{J}}$	\leftrightarrow	$S_{\mathbb{AB}}$
$C_n^{\mathbb{I}}$	\leftrightarrow	$C_n^{\mathbb{A}}$,	$G_{\mathrm{flux}}^{\mathbb{I}}$	\leftrightarrow	$G^{\mathbb{A}}_{\mathrm{flux}},$
$\mathcal{O}^{\mathbb{A}}{}_{\mathbb{I}}$	\leftrightarrow	$\widetilde{\mathcal{O}}^{\mathbb{I}}{}_{\mathbb{A}}.$			

イロト イポト イヨト イヨト

æ

Overview Dimensional Reduction Results and Discussion Conclusion and Outlook

Outlook

- DFT provides a useful framework to handle non-geometric flux compactifications
- Possibilities for further research: orientifold compactifications, heterotic DFT, Exceptional Field Theory, ...

A 10

きょうきょう

Overview Dimensional Reduction Results and Discussion Conclusion and Outlook

End of Talk

Questions?

Philip Betzler Application of Double Field Theory to Flux Compactifications

イロト イボト イヨト イヨト

æ