Hidden symmetries in integrable models

David Osten

IMPRS Particle Physics Colloquium MPP München, 14.12.2017

[^0]
motivation

classical
integrability

- conceptual challenges in quantum field theory non-perturbative behaviour (spectrum, asymptotic freedom, solitons),...

motivation

- conceptual challenges in quantum field theory non-perturbative behaviour (spectrum, asymptotic freedom, solitons),...
- standard approaches do not really help
- perturbation theory - expansion around free theory technical complications, resumming issues, ...
- lattice calculations

motivation

- conceptual challenges in quantum field theory non-perturbative behaviour (spectrum, asymptotic freedom, solitons),...
- standard approaches do not really help
- perturbation theory - expansion around free theory technical complications, resumming issues, ...
- lattice calculations
- here: exactly solvable (or integrable) toy models simple but non-trivial interacting theories

motivation

- conceptual challenges in quantum field theory non-perturbative behaviour (spectrum, asymptotic freedom, solitons),...
- standard approaches do not really help
- perturbation theory - expansion around free theory technical complications, resumming issues, ...
- lattice calculations
- here: exactly solvable (or integrable) toy models simple but non-trivial interacting theories
- What is a 'complete' or 'exact' solution?
- simplicity \leftrightarrow (hidden) symmetries?
- applications?

Hidden symmetries in integrable models

David Osten
classical integrability

overview

(1) classical integrability - symmetries and geometry
(2) quantum integrability-symmetries and the S-matrix
(3) applications

Hidden in integrable models

David Osten

the (unexpected) beauty of the Kepler problem

- effective one-body problem in central potential $V=-\frac{\alpha}{r}$

Hidden symmetries in integrable models

David Osten

the (unexpected) beauty of the Kepler problem

classical integrability symmetries and geometry

- effective one-body problem in central potential $V=-\frac{\alpha}{r}$
- conserved charges:
- standard - energy E, angular momentum \vec{L}

Hidden symmetries in integrable models

the (unexpected) beauty of the Kepler problem

- effective one-body problem in central potential $V=-\frac{\alpha}{r}$
- conserved charges:
- standard - energy E, angular momentum \vec{L}
- accidental/'hidden' - perihel,

Runge-Lenz vector $\vec{A}=\vec{p} \times \vec{L}-\alpha m \frac{\vec{r}}{r}$

- \vec{L} and \vec{A} : Noether charges of 'hidden' SO(4)
- algebraic solution via hidden symmetries

Hidden symmetries in integrable models

symmetries and geometry

Consider a system with n degrees of freedom
$\rightarrow 2 n$-dimensional phase space \mathcal{M} with $H(\mathbf{q}, \mathbf{p})$ and $\{$,$\} .$

- When is this system called integrable?

symmetries and geometry

Consider a system with n degrees of freedom
$\rightarrow 2 n$-dimensional phase space \mathcal{M} with $H(\mathbf{q}, \mathbf{p})$ and $\{$,$\} .$

- When is this system called integrable?

Definition (Liouville integrability):

- m functions, independent (on almost all \mathcal{M}),

$$
f_{k}(\mathbf{q}, \mathbf{p}) \text { with }\left\{f_{i}, f_{j}\right\}=0,\left\{f_{k}, H\right\}=0
$$

- $n \leq m \leq 2 n-1$: (super)integrable
\Rightarrow Kepler problem: 'maximally' integrable ($n=3, m=5$)

symmetries and geometry

Consider a system with n degrees of freedom
$\rightarrow 2 n$-dimensional phase space \mathcal{M} with $H(\mathbf{q}, \mathbf{p})$ and $\{$,$\} .$

- When is this system called integrable?

Definition (Liouville integrability):

- m functions, independent (on almost all \mathcal{M}),

$$
f_{k}(\mathbf{q}, \mathbf{p}) \text { with }\left\{f_{i}, f_{j}\right\}=0,\left\{f_{k}, H\right\}=0
$$

- $n \leq m \leq 2 n-1$: (super)integrable \Rightarrow Kepler problem: 'maximally' integrable ($n=3, m=5$)
- How do the 'solutions' look?

symmetries and geometry

Consider a system with n degrees of freedom
$\rightarrow 2 n$-dimensional phase space \mathcal{M} with $H(\mathbf{q}, \mathbf{p})$ and $\{$,$\} .$

- When is this system called integrable?

Definition (Liouville integrability):

- m functions, independent (on almost all \mathcal{M}),

$$
f_{k}(\mathbf{q}, \mathbf{p}) \quad \text { with } \quad\left\{f_{i}, f_{j}\right\}=0,\left\{f_{k}, H\right\}=0
$$

- $n \leq m \leq 2 n-1$: (super)integrable \Rightarrow Kepler problem: 'maximally' integrable ($n=3, m=5$)
- How do the 'solutions' look?

Theorem (Arnold): Assume we have an integrable Hamiltonian system, if $\mathcal{M}_{f}=\left\{(\mathbf{q}, \mathbf{p}) \in \mathcal{M} \mid f_{k}(\mathbf{q}, \mathbf{p})=c_{k}\right\}$ is compact and connected: $\mathcal{M}_{f} \sim T^{n}: S^{1} \times S^{1} \times \ldots \times S^{1}$. see e.g. harmonic oscillator, Kepler problem

conceptual lessons

- \# conserved charges \geq \# d.o.f.
\rightarrow purely algebraic construction of solutions

conceptual lessons

- \# conserved charges \geq \# d.o.f.
\rightarrow purely algebraic construction of solutions
- standard examples:
- 1d systems (energy conservation)
- harmonic oscillator
- Kepler problem

conceptual lessons

- \# conserved charges \geq \# d.o.f.
\rightarrow purely algebraic construction of solutions
- standard examples:
- 1d systems (energy conservation)
- harmonic oscillator
- Kepler problem
- disturbed integrable models:
\rightarrow violated conservation laws
e.g. 'disturbed' Kepler problem: perihel rotation

Classical field theories

What about field theories?

so far only systems with finitly many degrees of freedom, integrability rather trivial

- field theories have an ∞-dimensional phase space degrees of freedom for every point in space
- $\infty-\infty=$?
how organise enough symmetries, what is a complete solution? - no universal definition of integrability

Hidden symmetries in integrable models

David Osten
classical
integrability symmetries and geometry
quantum integrability symmetries and the S-matrix applications

Lax integrability

description for a big class of integrable theories

- existence of a pair of (differential) operators L, M

$$
\text { e.o.m. } \Leftrightarrow \frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{L}=[\mathbf{L}, \mathbf{M}]
$$

Hidden symmetries in integrable models

David Osten
classical

Lax integrability

description for a big class of integrable theories

- existence of a pair of (differential) operators \mathbf{L}, \mathbf{M}

$$
\text { e.o.m. } \Leftrightarrow \frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{L}=[\mathbf{L}, \mathbf{M}]
$$

- \Rightarrow eigenvalues of L are conserved!
infinite tower of conserved charges, generating an ∞-dim. (hidden) symmetry group
- exact solution?

Hidden symmetries in integrable models

David Osten

quantum integrability - naive

generalisation of classical integrability

symmetries:
functions on phase space $\mathcal{M} \rightarrow$ operators on Hilbert space \mathcal{H}
$\exists n=\operatorname{dim}(\mathcal{H})$ independent operators $\hat{l}_{1}, \ldots, \hat{I}_{n}$:

$$
\left[\hat{\imath}_{i}, \hat{l}_{j}\right]=0, \quad\left[\hat{l}_{i}, \hat{H}\right]=0
$$

quantum integrability - naive

generalisation of classical integrability

symmetries:
functions on phase space $\mathcal{M} \rightarrow$ operators on Hilbert space \mathcal{H}
$\exists n=\operatorname{dim}(\mathcal{H})$ independent operators $\hat{l}_{1}, \ldots, \hat{l}_{n}$:

$$
\left[\hat{\imath}_{i}, \hat{\imath}_{j}\right]=0, \quad\left[\hat{\imath}_{i}, \hat{H}\right]=0
$$

but: commuting operators are not independent on the whole Hilbert space easy case: \hat{A}, \hat{B} with non-degenerate spectrum and $[\hat{A}, \hat{B}]=0$ \Rightarrow common eigenvectors $\Rightarrow \hat{A}$ is a polynomial in \hat{B}.

Hidden
symmetries in integrable models

quantum integrability

instead: properties of S-matrix under symmetries

- $n \rightarrow m$ scattering in $1+1 d$:

$$
\mathcal{A} \sim\left\langle\mathbf{p}_{1}^{\text {out }} ; \ldots ; \mathbf{p}_{m}^{\text {out }}\right| S\left|\mathbf{p}_{1}^{\text {in }} ; \ldots ; \mathbf{p}_{n}^{\text {in }}\right\rangle
$$

- special in $1 d$: spatial ordering of wavepackages

$$
\begin{aligned}
\mathbf{p}_{i}=\left(E_{i}, p_{i}\right), \quad p_{1}^{\text {in }}>\ldots & >p_{n}^{\text {in }} \\
p_{m}^{\text {out }}>\ldots & >p_{1}^{\text {out }}
\end{aligned}
$$

Hidden symmetries in integrable models

quantum integrability

instead: properties of S-matrix under symmetries

- $n \rightarrow m$ scattering in $1+1 d$:

candidates for (higher, hidden) symmetries:
- higher spin symmetries
- non-local symmetries

example: higher spin

David Osten

- 'higher spin' symmetries
- 'higher spin' generator \hat{Q}_{s} (Lorentz tensor) schematical action on wavepackages $\phi(x, p)$:

$$
\hat{Q}_{s} \propto \hat{\mathbf{p}}^{s}, \quad e^{-i \alpha \hat{Q}_{s}}|\phi(x, p)\rangle \propto\left|\phi\left(x+s \alpha p^{s-1}, p\right)\right\rangle
$$

momentum-dependent shifts for $s>1$

example: higher spin

- 'higher spin' symmetries
- 'higher spin' generator \hat{Q}_{s} (Lorentz tensor) schematical action on wavepackages $\phi(x, p)$:

$$
\hat{Q}_{s} \propto \hat{\mathbf{p}}^{s}, \quad e^{-i \alpha \hat{Q}_{s}}|\phi(x, p)\rangle \propto\left|\phi\left(x+s \alpha p^{s-1}, p\right)\right\rangle
$$

momentum-dependent shifts for $s>1$

- if symmetry, \langle out $| S|i n\rangle=\langle$ out $| e^{i \alpha \hat{Q}_{s}} S e^{-i \alpha \hat{Q}_{s}}|i n\rangle$, rearrange |out> resp. \mid in \rangle :

Hidden symmetries in integrable models
integrability
symmetries and the S-matrix

example: higher spin

- 'higher spin' symmetries
- 'higher spin' generator \hat{Q}_{s} (Lorentz tensor) schematical action on wavepackages $\phi(x, p)$:

$$
\hat{Q}_{s} \propto \hat{\mathbf{p}}^{s}, \quad e^{-i \alpha \hat{Q}_{s}}|\phi(x, p)\rangle \propto\left|\phi\left(x+s \alpha p^{s-1}, p\right)\right\rangle
$$

momentum-dependent shifts for $s>1$

- if symmetry, \langle out $| S|i n\rangle=\langle$ out $| e^{i \alpha \hat{Q}_{s}} S e^{-i \alpha \hat{Q}_{s}}|i n\rangle$, rearrange |out> resp. \mid in \rangle :

Comment: Coleman-Mandula theorem - S-matrix trivial in $3+1 d$, if Poincare symmetry is extended, but: loophole in $1+d_{10 / 13}$

Hidden symmetries in integrable models

David Osten
classical
integrability

exact S-matrices

'definition' of an integrable quantum theory

- elasticity - no particle production, initial set of momenta $=$ final set of momenta
- factorisability
$n \rightarrow n S$-matrix is a product of $2 \rightarrow 2 S$-matrices

Hidden symmetries in integrable models

exact S-matrices

'definition' of an integrable quantum theory

- elasticity - no particle production, initial set of momenta $=$ final set of momenta
- factorisability
$n \rightarrow n S$-matrix is a product of $2 \rightarrow 2 S$-matrices
- Yang-Baxter equation: $S_{23} S_{12} S_{23}=S_{12} S_{23} S_{12}$

- additionally: standard (physical) constraints unitarity, crossing
optional: Lorentz invariance, C, P, T

Hidden symmetries in integrable models

David Osten
classical integrability symmetries and geometry
quantum integrability symmetries and the S-matrix applications

applications

Why should we care about integrability in $1+1 d$?

Hidden symmetries in integrable models

David Osten
classical
integrability
symmetries and geometry
quantum integrability symmetries and the S-matrix applications

applications

Why should we care about integrability in $1+1 d$?

- string theory

Hidden symmetries in integrable models

applications

Why should we care about integrability in $1+1 d$?

- string theory

- spin chains

- toy model for condensed matter magnetism, phase transitions, ...

Hidden symmetries in integrable models

applications

Why should we care about integrability in $1+1 d$?

- string theory

- spin chains

- toy model for condensed matter magnetism, phase transitions, ...
- gauge theory:
$\mathcal{N}=4$ supersymmetric Yang-Mills theory in $3+1 d$
- massless, supersymmetric cousin of QCD
- spectra of operators via spin chains

Hidden symmetries in integrable models

applications

Why should we care about integrability in $1+1 d$?

- string theory

- spin chains

- toy model for condensed matter magnetism, phase transitions, ...
- gauge theory:
$\mathcal{N}=4$ supersymmetric Yang-Mills theory in $3+1 d$
- massless, supersymmetric cousin of QCD
- spectra of operators via spin chains
- toy models for otherwise inaccessible systems $1 d$ Bose condensates, $1+1 d$ quantum gravity, ...

conclusion

- integrability and the role of (hidden) symmetries
- classical (field) theory: symmetries organise the phase space, enough symmetry \rightarrow purely algebraic solution
- quantum field theory in $1+1 d$:
enough symmetry \rightarrow factorisable scattering

conclusion

- integrability and the role of (hidden) symmetries
- classical (field) theory: symmetries organise the phase space, enough symmetry \rightarrow purely algebraic solution
- quantum field theory in $1+1 d$: enough symmetry \rightarrow factorisable scattering
- physics
- integrable models theirselves not phenomenologically interesting periodic behaviour of solutions (often), no particle production, mostly lower dimensional field theories

conclusion

- integrability and the role of (hidden) symmetries
- classical (field) theory: symmetries organise the phase space, enough symmetry \rightarrow purely algebraic solution
- quantum field theory in $1+1 d$: enough symmetry \rightarrow factorisable scattering
- physics
- integrable models theirselves not phenomenologically interesting periodic behaviour of solutions (often), no particle production, mostly lower dimensional field theories
- but: non-trivial toy models for conceptual problems of more complicated theories non-perturbative QFT, quantum gravity, ...

Thank you for your attention!

[^0]: Max-Planck-Institut für Physik
 (Werner-Heisenberg-Institut)

