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motivation

• conceptual challenges in quantum field theory
non-perturbative behaviour (spectrum, asymptotic freedom,

solitons),...

• standard approaches do not really help
• perturbation theory - expansion around free theory

technical complications, resumming issues, ...

• lattice calculations

• here: exactly solvable (or integrable) toy models
simple but non-trivial interacting theories

• What is a ’complete’ or ’exact’ solution?
• simplicity ↔ (hidden) symmetries?
• applications?
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1 classical integrability - symmetries and geometry

2 quantum integrability - symmetries and the S-matrix

3 applications
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the (unexpected) beauty of

the Kepler problem

A
x

m p

• effective one-body
problem in central
potential V = − α

r

• conserved charges:
• standard - energy E , angular momentum ~L
• accidental/’hidden’ - perihel,

Runge-Lenz vector ~A = ~p ×~L− αm~r
r

• ~L and ~A: Noether charges of ’hidden’ SO(4)

• algebraic solution via hidden symmetries
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symmetries and geometry
Consider a system with n degrees of freedom

→ 2n-dimensional phase space M with H(q, p) and { , } .

• When is this system called integrable?

Definition (Liouville integrability):

• m functions, independent (on almost all M),

fk (q, p) with {fi , fj} = 0, {fk ,H} = 0

• n ≤ m ≤ 2n− 1: (super)integrable

⇒ Kepler problem: ’maximally’ integrable (n=3, m=5)

• How do the ’solutions’ look?
Theorem (Arnold): Assume we have an integrable
Hamiltonian system, if Mf = {(q, p) ∈ M | fk (q, p) = ck}
is compact and connected: Mf ∼ T n : S1 × S1 × ...× S1.

see e.g. harmonic oscillator, Kepler problem

4 / 13



Hidden
symmetries
in integrable

models

David Osten

classical
integrability -
symmetries and
geometry

quantum
integrability -
symmetries and
the S-matrix

applications

symmetries and geometry
Consider a system with n degrees of freedom

→ 2n-dimensional phase space M with H(q, p) and { , } .

• When is this system called integrable?
Definition (Liouville integrability):

• m functions, independent (on almost all M),

fk (q, p) with {fi , fj} = 0, {fk ,H} = 0

• n ≤ m ≤ 2n− 1: (super)integrable

⇒ Kepler problem: ’maximally’ integrable (n=3, m=5)

• How do the ’solutions’ look?
Theorem (Arnold): Assume we have an integrable
Hamiltonian system, if Mf = {(q, p) ∈ M | fk (q, p) = ck}
is compact and connected: Mf ∼ T n : S1 × S1 × ...× S1.

see e.g. harmonic oscillator, Kepler problem

4 / 13



Hidden
symmetries
in integrable

models

David Osten

classical
integrability -
symmetries and
geometry

quantum
integrability -
symmetries and
the S-matrix

applications

symmetries and geometry
Consider a system with n degrees of freedom

→ 2n-dimensional phase space M with H(q, p) and { , } .

• When is this system called integrable?
Definition (Liouville integrability):

• m functions, independent (on almost all M),

fk (q, p) with {fi , fj} = 0, {fk ,H} = 0

• n ≤ m ≤ 2n− 1: (super)integrable

⇒ Kepler problem: ’maximally’ integrable (n=3, m=5)

• How do the ’solutions’ look?

Theorem (Arnold): Assume we have an integrable
Hamiltonian system, if Mf = {(q, p) ∈ M | fk (q, p) = ck}
is compact and connected: Mf ∼ T n : S1 × S1 × ...× S1.

see e.g. harmonic oscillator, Kepler problem

4 / 13



Hidden
symmetries
in integrable

models

David Osten

classical
integrability -
symmetries and
geometry

quantum
integrability -
symmetries and
the S-matrix

applications

symmetries and geometry
Consider a system with n degrees of freedom

→ 2n-dimensional phase space M with H(q, p) and { , } .

• When is this system called integrable?
Definition (Liouville integrability):

• m functions, independent (on almost all M),

fk (q, p) with {fi , fj} = 0, {fk ,H} = 0

• n ≤ m ≤ 2n− 1: (super)integrable

⇒ Kepler problem: ’maximally’ integrable (n=3, m=5)

• How do the ’solutions’ look?
Theorem (Arnold): Assume we have an integrable
Hamiltonian system, if Mf = {(q, p) ∈ M | fk (q, p) = ck}
is compact and connected: Mf ∼ T n : S1 × S1 × ...× S1.

see e.g. harmonic oscillator, Kepler problem

4 / 13



Hidden
symmetries
in integrable

models

David Osten

classical
integrability -
symmetries and
geometry

quantum
integrability -
symmetries and
the S-matrix

applications

conceptual lessons
• # conserved charges ≥ # d.o.f.
→ purely algebraic construction of solutions

• standard examples:
• 1d systems (energy conservation)
• harmonic oscillator
• Kepler problem

• disturbed integrable models:
→ violated conservation laws
e.g. ’disturbed’ Kepler problem: perihel rotation
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Classical field theories

What about field theories?
so far only systems with finitly many degrees of freedom,

integrability rather trivial

• field theories have an ∞-dimensional phase space
degrees of freedom for every point in space

• ∞−∞ =?
how organise enough symmetries, what is a complete

solution? - no universal definition of integrability
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Lax integrability

description for a big class of integrable theories

• existence of a pair of (differential) operators L, M

e.o.m. ⇔ d
dt

L = [L, M]

• ⇒ eigenvalues of L are conserved!
infinite tower of conserved charges,

generating an ∞-dim. (hidden) symmetry group

• exact solution?
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quantum integrability - naive

generalisation of classical integrability
symmetries:

functions on phase space M → operators on Hilbert space H

∃n =dim(H) independent operators Î1, ..., În:

[Îi , Îj ] = 0, [Îi , Ĥ ] = 0.

but: commuting operators are not independent on the
whole Hilbert space
easy case: Â, B̂ with non-degenerate spectrum and [Â, B̂ ] = 0

⇒ common eigenvectors ⇒ Â is a polynomial in B̂.
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quantum integrability
instead: properties of S-matrix under symmetries

p
1

in

p
2

in

p
n

in

p
1

out

p
2

out

p
m

out

. .
 .

. .
 .

t

x

• n→ m scattering in 1+1d :

A ∼ 〈pout
1 ; ...; pout

m |S |pin
1 ; ...; pin

n 〉

• special in 1d : spatial ordering of
wavepackages

pi = (Ei , pi ), pin1 > ... > pinn

poutm > ... > pout1

candidates for (higher, hidden) symmetries:

• higher spin symmetries

• non-local symmetries
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example: higher spin
• ’higher spin’ symmetries

• ’higher spin’ generator Q̂s (Lorentz tensor)
schematical action on wavepackages φ(x , p):

Q̂s ∝ p̂s , e−iαQ̂s |φ(x , p)〉 ∝ |φ(x + sαps−1, p)〉
momentum-dependent shifts for s > 1

• if symmetry, 〈out|S |in〉 = 〈out|e iαQ̂sSe−iαQ̂s |in〉,
rearrange |out〉 resp. |in〉:

t

x

p
1
in

Q
S

p
2
in

p
3
in

p
4
in

p
1
in

p
2
in

p
3
in

p
4
in

p
1
out p

2
out p

3
out

p
4
out p

1
out p

2 p
3
out

p
4
out

Comment: Coleman-Mandula theorem - S-matrix trivial in

3+1d , if Poincare symmetry is extended, but: loophole in 1+1d
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exact S -matrices
’definition’ of an integrable quantum theory

• elasticity - no particle production,

initial set of momenta = final set of momenta

• factorisability
n→ n S-matrix is a product of 2→ 2 S-matrices

• Yang-Baxter equation: S23S12S23 = S12S23S12

= =

1

2

3

1 1

2

2

33

• additionally: standard (physical) constraints
unitarity, crossing

optional: Lorentz invariance, C , P, T
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Why should we care about integrability in 1+1d?

• string theory

• spin chains
• toy model for condensed matter

magnetism, phase transitions, ...

• gauge theory:
N = 4 supersymmetric Yang-Mills theory in 3+1d
• massless, supersymmetric cousin of QCD
• spectra of operators via spin chains

• toy models for otherwise inaccessible systems
1d Bose condensates, 1+1d quantum gravity, ...

12 / 13



Hidden
symmetries
in integrable

models

David Osten

classical
integrability -
symmetries and
geometry

quantum
integrability -
symmetries and
the S-matrix

applications

applications

Why should we care about integrability in 1+1d?

• string theory

• spin chains
• toy model for condensed matter

magnetism, phase transitions, ...

• gauge theory:
N = 4 supersymmetric Yang-Mills theory in 3+1d
• massless, supersymmetric cousin of QCD
• spectra of operators via spin chains

• toy models for otherwise inaccessible systems
1d Bose condensates, 1+1d quantum gravity, ...

12 / 13



Hidden
symmetries
in integrable

models

David Osten

classical
integrability -
symmetries and
geometry

quantum
integrability -
symmetries and
the S-matrix

applications

applications

Why should we care about integrability in 1+1d?

• string theory

• spin chains
• toy model for condensed matter

magnetism, phase transitions, ...

• gauge theory:
N = 4 supersymmetric Yang-Mills theory in 3+1d
• massless, supersymmetric cousin of QCD
• spectra of operators via spin chains

• toy models for otherwise inaccessible systems
1d Bose condensates, 1+1d quantum gravity, ...

12 / 13



Hidden
symmetries
in integrable

models

David Osten

classical
integrability -
symmetries and
geometry

quantum
integrability -
symmetries and
the S-matrix

applications

applications

Why should we care about integrability in 1+1d?

• string theory

• spin chains
• toy model for condensed matter

magnetism, phase transitions, ...

• gauge theory:
N = 4 supersymmetric Yang-Mills theory in 3+1d
• massless, supersymmetric cousin of QCD
• spectra of operators via spin chains

• toy models for otherwise inaccessible systems
1d Bose condensates, 1+1d quantum gravity, ...

12 / 13



Hidden
symmetries
in integrable

models

David Osten

classical
integrability -
symmetries and
geometry

quantum
integrability -
symmetries and
the S-matrix

applications

applications

Why should we care about integrability in 1+1d?

• string theory

• spin chains
• toy model for condensed matter

magnetism, phase transitions, ...

• gauge theory:
N = 4 supersymmetric Yang-Mills theory in 3+1d
• massless, supersymmetric cousin of QCD
• spectra of operators via spin chains

• toy models for otherwise inaccessible systems
1d Bose condensates, 1+1d quantum gravity, ...

12 / 13



Hidden
symmetries
in integrable

models

David Osten

classical
integrability -
symmetries and
geometry

quantum
integrability -
symmetries and
the S-matrix

applications

conclusion

• integrability and the role of (hidden) symmetries
• classical (field) theory:

symmetries organise the phase space,

enough symmetry → purely algebraic solution

• quantum field theory in 1+1d :
enough symmetry → factorisable scattering

• physics
• integrable models theirselves not

phenomenologically interesting
periodic behaviour of solutions (often), no particle

production, mostly lower dimensional field theories

• but: non-trivial toy models for conceptual
problems of more complicated theories
non-perturbative QFT, quantum gravity, ...
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Thank you for your attention!
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