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e standard approaches do not really help
e perturbation theory - expansion around free theory
technical complications, resumming issues, ...
e lattice calculations
e here: exactly solvable (or integrable) toy models
simple but non-trivial interacting theories

e What is a 'complete’ or 'exact’ solution?
e simplicity <> (hidden) symmetries?
e applications?
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the (unexpected) beauty of
the Kepler problem

e effective one-body
problem in central
potential V = —2%

r

e conserved charges:

—

e standard - energy E, angular momentum L
e accidental/’hidden’ - perihel,
Runge Lenz vector A = p X [— txm—

o [ and A: Noether charges of 'hidden’ SO(4)
e algebraic solution via hidden symmetries
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Consider a system with n degrees of freedom
— 2n-dimensional phase space M with H(q,p) and {, }.

e When is this system called integrable?
Definition (Liouville integrability):
e m functions, independent (on almost all M),

f(a.p) with {fi,fi} =0, {fi, H} =0

e n < m < 2n—1: (super)integrable
= Kepler problem: 'maximally’ integrable (n=3, m=5)
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Consider a system with n degrees of freedom
— 2n-dimensional phase space M with H(q,p) and {, }.

e When is this system called integrable?
Definition (Liouville integrability):

e m functions, independent (on almost all M),
f(q.p) with {f, £} =0, {fi,H} =0

e n < m < 2n—1: (super)integrable
= Kepler problem: 'maximally’ integrable (n=3, m=5)
e How do the 'solutions’ look?
Theorem (Arnold): Assume we have an integrable

Hamiltonian system, if M¢ = {(q,p) € M | fx(q,p) = c}
is compact and connected: My ~ T": S1 x S§1x .. x SL.

see e.g. harmonic oscillator, Kepler problem
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conceptual lessons

# conserved charges > # d.o.f.
— purely algebraic construction of solutions
e standard examples:
e 1d systems (energy conservation)
e harmonic oscillator
e Kepler problem
e disturbed integrable models:
— violated conservation laws
e.g. 'disturbed’ Kepler problem: perihel rotation
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What about field theories?
so far only systems with finitly many degrees of freedom,
integrability rather trivial

e field theories have an co-dimensional phase space
degrees of freedom for every point in space

e 00— 00 =?
how organise enough symmetries, what is a complete
solution? - no universal definition of integrability
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Lax integrability

description for a big class of integrable theories

e existence of a pair of (differential) operators L, M

d
—L=[|LM
eom. & o L, M]

e = eigenvalues of L are conserved!
infinite tower of conserved charges,

generating an oo-dim. (hidden) symmetry group

e exact solution?
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quantum integrability - naive

generalisation of classical integrability
symmetries:

functions on phase space M — operators on Hilbert space H

~

dn =dim(H) independent operators s

>

7,

~

i1 =0, [7;, A] = 0.

~
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quantum integrability - naive

generalisation of classical integrability
symmetries:

functions on phase space M — operators on Hilbert space H

~

dn =dim(H) independent operators s

>

7,

~

[] =0, [7;, A] = 0.

~

but: commuting operators are not independent on the

whole Hilbert space
easy case: A, B with non-degenerate spectrum and [A, B] =0

= common eigenvectors = A is a polynomial in B.
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quantum integrability

instead: properties of S-matrix under symmetries
® n — m scattering in 1+1d:
meLI(

A~ (p2 i pp IS IpT P

.. ® special in 1d: spatial ordering of

2 wavepackages

plout

pi = (Ei.pi), p{" > ...>py
prt;ut > > p]o-ut

candidates for (higher, hidden) symmetries:
e higher spin symmetries

e non-local symmetries
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example: higher spin
e 'higher spin’ symmetries
e 'higher spin’ generator Qs (Lorentz tensor)
schematical action on wavepackages ¢(x, p):

Qsocp®, e % p(x, p)) o |p(x + sup*L, p))
momentum-dependent shifts for s > 1
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example: higher spin
e 'higher spin’ symmetries
e 'higher spin’ generator (s (Lorentz tensor)
schematical action on wavepackages ¢(x, p):
Qocps, e [p(x,p)) o [p(x + sapL, p))
momentum-dependent shifts for s > 1 X
o if symmetry, {(out|S|in) = (out|e’*% Se=Qs|jn),
rearrange |out) resp. |in):

Comment: Coleman-Mandula theorem - S-matrix trivial in
3+1d, if Poincare symmetry is extended, but: loophole in 1+1d 10/13
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exact S-matrices

"definition’ of an integrable quantum theory

e elasticity - no particle production,
initial set of momenta = final set of momenta

o factorisability
n — n S-matrix is a product of 2 — 2 S-matrices

e Yang-Baxter equation: 523512523 = 512523512

1 1 1
) _ _ 2

=, =
3 3

e additionally: standard (physical) constraints
unitarity, crossing
optional: Lorentz invariance, C, P, T
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e string theory % + + +.._
e spin chains m

e toy model for condensed matter
magnetism, phase transitions, ...
e gauge theory:
N = 4 supersymmetric Yang-Mills theory in 3+1d
® massless, supersymmetric cousin of QCD
e spectra of operators via spin chains

applications

e toy models for otherwise inaccessible systems
1d Bose condensates, 14+1d quantum gravity, ...
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e integrability and the role of (hidden) symmetries
e classical (field) theory:
symmetries organise the phase space,
enough symmetry — purely algebraic solution
e quantum field theory in 141d:
applications enough symmetry — factorisable scattering
e physics
e integrable models theirselves not
phenomenologically interesting
periodic behaviour of solutions (often), no particle
production, mostly lower dimensional field theories
e but: non-trivial toy models for conceptual
problems of more complicated theories
non-perturbative QFT, quantum gravity, ...
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