David Osten

IMPRS Particle Physics Colloquium MPP München, 14.12.2017

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the *S*-matrix

applications

• conceptual challenges in quantum field theory non-perturbative behaviour (spectrum, asymptotic freedom, solitons),...

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the *S*-matrix

applications

- conceptual challenges in quantum field theory non-perturbative behaviour (spectrum, asymptotic freedom, solitons),...
- standard approaches do not really help
 - perturbation theory expansion around free theory technical complications, resumming issues, ...
 - lattice calculations

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the *S*-matrix

applications

- conceptual challenges in quantum field theory non-perturbative behaviour (spectrum, asymptotic freedom, solitons),...
- standard approaches do not really help
 - perturbation theory expansion around free theory technical complications, resumming issues, ...
 - lattice calculations
- here: **exactly solvable** (or **integrable**) toy models simple but non-trivial interacting theories

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the *S*-matrix

applications

- conceptual challenges in quantum field theory non-perturbative behaviour (spectrum, asymptotic freedom, solitons),...
- standard approaches do not really help
 - perturbation theory expansion around free theory technical complications, resumming issues, ...

- lattice calculations
- here: **exactly solvable** (or **integrable**) toy models simple but non-trivial interacting theories
 - What is a 'complete' or 'exact' solution?
 - simplicity \leftrightarrow (hidden) symmetries?
 - applications?

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

1 classical integrability - symmetries and geometry

2 quantum integrability - symmetries and the S-matrix

3 applications

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

the (unexpected) beauty of the Kepler problem

• effective one-body problem in central potential $V = -\frac{\alpha}{r}$

David Osten

classical integrability symmetries and geometry

- quantum integrability symmetries and the S-matrix
- applications

the (unexpected) beauty of the Kepler problem

• effective one-body problem in central potential $V = -\frac{\alpha}{r}$

- conserved charges:
 - standard energy E, angular momentum \vec{L}

David Osten

classical integrability symmetries and geometry

- quantum integrability symmetries and the S-matrix
- applications

the (unexpected) beauty of the Kepler problem

• effective one-body problem in central potential $V = -\frac{\alpha}{r}$

- conserved charges:
 - standard energy E, angular momentum \vec{L}
 - accidental/'hidden' perihel, Runge-Lenz vector $\vec{A} = \vec{p} \times \vec{L} - \alpha m \frac{\vec{r}}{r}$
 - \vec{L} and \vec{A} : Noether charges of 'hidden' SO(4)
- algebraic solution via hidden symmetries

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

symmetries and geometry

Consider a system with n degrees of freedom

 \rightarrow 2n-dimensional phase space ${\cal M}$ with ${\it H}({\bf q},{\bf p})$ and $\{\ ,\ \}$.

• When is this system called integrable?

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

symmetries and geometry

 $\begin{array}{l} \mbox{Consider a system with n degrees of freedom} \\ \rightarrow 2n\mbox{-dimensional phase space \mathcal{M} with $H(\mathbf{q},\mathbf{p})$ and $\{$,$\}$.} \end{array}$

- When is this system called integrable? **Definition** (Liouville integrability):
 - *m* functions, independent (on almost all \mathcal{M}),

 $f_k(\mathbf{q},\mathbf{p})$ with $\{f_i,f_j\}=0,\ \{f_k,H\}=0$

- $n \le m \le 2n 1$: (super)**integrable**
 - \Rightarrow Kepler problem: 'maximally' integrable (n=3, m=5)

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

symmetries and geometry

Consider a system with n degrees of freedom $\rightarrow 2n\text{-dimensional phase space }\mathcal{M} \text{ with } H(\mathbf{q},\mathbf{p}) \text{ and } \{ \ , \ \} \ .$

- When is this system called integrable? **Definition** (Liouville integrability):
 - *m* functions, independent (on almost all \mathcal{M}),

 $f_k(\mathbf{q},\mathbf{p})$ with $\{f_i,f_j\}=0,\ \{f_k,H\}=0$

• $n \le m \le 2n - 1$: (super)integrable

 \Rightarrow Kepler problem: 'maximally' integrable (n=3, m=5)

• How do the 'solutions' look?

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

symmetries and geometry

Consider a system with n degrees of freedom $\rightarrow 2n\text{-dimensional phase space }\mathcal{M} \text{ with } H(\mathbf{q},\mathbf{p}) \text{ and } \{ \ , \ \} \ .$

- When is this system called integrable? **Definition** (Liouville integrability):
 - *m* functions, independent (on almost all \mathcal{M}),

 $f_k(\mathbf{q},\mathbf{p})$ with $\{f_i,f_j\}=0,\ \{f_k,H\}=0$

- n ≤ m ≤ 2n − 1: (super)integrable
 ⇒ Kepler problem: 'maximally' integrable (n=3, m=5)
- How do the 'solutions' look?

Theorem (Arnold): Assume we have an integrable Hamiltonian system, if $\mathcal{M}_f = \{(\mathbf{q}, \mathbf{p}) \in \mathcal{M} \mid f_k(\mathbf{q}, \mathbf{p}) = c_k\}$ is compact and connected: $\mathcal{M}_f \sim T^n : S^1 \times S^1 \times ... \times S^1$. see e.g. harmonic oscillator, Kepler problem

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

conceptual lessons

• # conserved charges $\ge \#$ d.o.f.

 \rightarrow purely algebraic construction of solutions

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the *S*-matrix

applications

conceptual lessons

- # conserved charges $\ge \#$ d.o.f.
 - ightarrow purely algebraic construction of solutions
- standard examples:
 - 1d systems (energy conservation)
 - harmonic oscillator
 - Kepler problem

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

conceptual lessons

- # conserved charges $\ge \#$ d.o.f.
 - ightarrow purely algebraic construction of solutions
- standard examples:
 - 1d systems (energy conservation)
 - harmonic oscillator
 - Kepler problem
- disturbed integrable models:
 - \rightarrow violated conservation laws
 - e.g. 'disturbed' Kepler problem: perihel rotation

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the *S*-matrix

applications

Classical field theories

What about field theories? so far only systems with finitly many degrees of freedom, integrability rather trivial

- field theories have an ∞-dimensional phase space degrees of freedom for every point in space
- $\infty \infty = ?$

how organise enough symmetries, what is a complete solution? - no universal definition of integrability

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

Lax integrability

description for a big class of integrable theoriesexistence of a pair of (differential) operators L, M

e.o.m.
$$\Leftrightarrow \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{L} = [\mathbf{L}, \mathbf{M}]$$

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

Lax integrability

description for a big class of integrable theoriesexistence of a pair of (differential) operators L, M

e.o.m.
$$\Leftrightarrow \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{L} = [\mathbf{L}, \mathbf{M}]$$

- ⇒ eigenvalues of *L* are conserved! infinite tower of conserved charges, generating an ∞-dim. (hidden) symmetry group
- exact solution?

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

quantum integrability - naive

generalisation of classical integrability symmetries:

functions on phase space $\mathcal{M} \rightarrow$ operators on Hilbert space \mathcal{H}

 $\exists n = \dim(\mathcal{H}) \text{ independent operators } \hat{l}_1, ..., \hat{l}_n$:

$$[\hat{l}_i, \hat{l}_j] = 0, \qquad [\hat{l}_i, \hat{H}] = 0.$$

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

quantum integrability - naive

generalisation of classical integrability symmetries:

functions on phase space $\mathcal{M} \rightarrow$ operators on Hilbert space \mathcal{H}

 $\exists n = \dim(\mathcal{H}) \text{ independent operators } \hat{l}_1, ..., \hat{l}_n$:

$$[\hat{l}_i, \hat{l}_j] = 0, \qquad [\hat{l}_i, \hat{H}] = 0.$$

but: commuting operators are not independent on the whole Hilbert space easy case: \hat{A} , \hat{B} with non-degenerate spectrum and $[\hat{A}, \hat{B}] = 0$ \Rightarrow common eigenvectors $\Rightarrow \hat{A}$ is a polynomial in \hat{B} .

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

quantum integrability

instead: properties of *S*-matrix under symmetries • $n \rightarrow m$ scattering in 1+1*d*: • p_n^{out} • p_2^{out} ; ...; $p_m^{out}|S|\mathbf{p}_1^{in}$; ...; \mathbf{p}_n^{in} • special in 1*d*: spatial ordering of wavepackages • $\mathbf{p}_i = (E_i, p_i), \quad p_1^{in} > ... > p_n^{in}$ • $p_m^{out} > ... > p_n^{out}$

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

quantum integrability instead: properties of *S*-matrix under symmetries • $n \rightarrow m$ scattering in 1+1*d*:

 $\mathcal{A} \sim \langle \mathbf{p}_1^{out}; ...; \mathbf{p}_m^{out} | S | \mathbf{p}_1^{in}; ...; \mathbf{p}_n^{in} \rangle$

special in 1*d*: spatial ordering of wavepackages

$$\mathbf{p}_i = (E_i, p_i), \quad p_1^{in} > \dots > p_n^{in} \\ p_m^{out} > \dots > p_1^{out}$$

candidates for (higher, hidden) symmetries:

- higher spin symmetries
- non-local symmetries

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

example: higher spin

- 'higher spin' symmetries
 - 'higher spin' generator Q̂_s (Lorentz tensor) schematical action on wavepackages φ(x, p):

 $\hat{Q}_s \propto \hat{\mathbf{p}}^s$, $e^{-i\alpha \hat{Q}_s} |\phi(x,p)\rangle \propto |\phi(x+s\alpha p^{s-1},p)\rangle$ momentum-dependent shifts for s > 1

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

example: higher spin

- 'higher spin' symmetries
 - 'higher spin' generator Q̂_s (Lorentz tensor) schematical action on wavepackages φ(x, p):

 $\hat{Q}_s \propto \hat{\mathbf{p}}^s$, $e^{-i\alpha \hat{Q}_s} |\phi(x, p)\rangle \propto |\phi(x + s\alpha p^{s-1}, p)\rangle$ momentum-dependent shifts for s > 1

• if symmetry, $\langle out|S|in \rangle = \langle out|e^{i\alpha \hat{Q}_s} S e^{-i\alpha \hat{Q}_s}|in \rangle$, rearrange $|out\rangle$ resp. $|in\rangle$:

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

example: higher spin

- 'higher spin' symmetries
 - 'higher spin' generator Q̂_s (Lorentz tensor) schematical action on wavepackages φ(x, p):

 $\hat{Q}_s \propto \hat{\mathbf{p}}^s$, $e^{-i\alpha \hat{Q}_s} |\phi(x,p)\rangle \propto |\phi(x+s\alpha p^{s-1},p)\rangle$ momentum-dependent shifts for s > 1

• if symmetry, $\langle out|S|in \rangle = \langle out|e^{i\alpha \hat{Q}_s} S e^{-i\alpha \hat{Q}_s}|in \rangle$, rearrange $|out\rangle$ resp. $|in\rangle$:

Comment: Coleman-Mandula theorem - *S*-matrix trivial in 3+1d, if Poincare symmetry is extended, but: loophole in $1+1d_{10/13}$

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

exact S-matrices

- 'definition' of an integrable quantum theory
 - elasticity no particle production, initial set of momenta = final set of momenta
 - factorisability
 - $n \rightarrow n \ S$ -matrix is a product of $2 \rightarrow 2 \ S$ -matrices

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

exact S-matrices

- 'definition' of an integrable quantum theory
 - elasticity no particle production, initial set of momenta = final set of momenta
 - factorisability
 - n
 ightarrow n *S*-matrix is a product of 2 ightarrow 2 *S*-matrices
 - Yang-Baxter equation: $S_{23}S_{12}S_{23} = S_{12}S_{23}S_{12}$

• additionally: standard (physical) constraints unitarity, crossing optional: Lorentz invariance, *C*, *P*, *T*

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

applications

Why should we care about integrability in 1+1d?

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

applications

Why should we care about integrability in 1+1d?

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the *S*-matrix

applications

Why should we care about integrability in 1+1d?

+ > + > + > + ...

applications

• string theory

- spin chains
 - toy model for condensed matter magnetism, phase transitions, ...

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the *S*-matrix

applications

applications

Why should we care about integrability in 1+1d?

- string theory
- spin chains
 - toy model for condensed matter magnetism, phase transitions, ...
 - gauge theory:
 - $\mathcal{N}=$ 4 supersymmetric Yang-Mills theory in 3+1d
 - massless, supersymmetric cousin of QCD

+ > + > + > + ...

spectra of operators via spin chains

David Osten

classical integrability symmetries and geometry

quantum integrability symmetries and the *S*-matrix

applications

applications

Why should we care about integrability in 1+1d?

- string theory
- spin chains
 - toy model for condensed matter magnetism, phase transitions, ...
 - gauge theory:
 - $\mathcal{N}=4$ supersymmetric Yang-Mills theory in $3{+}1d$
 - massless, supersymmetric cousin of QCD

+ > + > + > + ...

- spectra of operators via spin chains
- toy models for otherwise inaccessible systems 1d Bose condensates, 1+1d quantum gravity, ...

conclusion

in integrable models David Osten

Hidden symmetries

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

• integrability and the role of (hidden) symmetries

- classical (field) theory: symmetries organise the phase space, enough symmetry → purely algebraic solution
- quantum field theory in 1+1d: enough symmetry → factorisable scattering

conclusion

in integrable models David Osten

Hidden symmetries

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

- integrability and the role of (hidden) symmetries
 - classical (field) theory: symmetries organise the phase space, enough symmetry \rightarrow purely algebraic solution
 - quantum field theory in 1+1d: enough symmetry → factorisable scattering
- physics
 - integrable models theirselves not phenomenologically interesting periodic behaviour of solutions (often), no particle production, mostly lower dimensional field theories

conclusion

in integrable models David Osten

Hidden symmetries

classical integrability symmetries and geometry

quantum integrability symmetries and the S-matrix

applications

- integrability and the role of (hidden) symmetries
 - classical (field) theory: symmetries organise the phase space, enough symmetry → purely algebraic solution
 - quantum field theory in 1+1d: enough symmetry → factorisable scattering
- physics
 - integrable models theirselves not phenomenologically interesting periodic behaviour of solutions (often), no particle production, mostly lower dimensional field theories
 - but: non-trivial toy models for conceptual problems of more complicated theories non-perturbative QFT, quantum gravity, ...

Thank you for your attention!