MADMAX: MAgnetised Disk-and-Mirror Axion eXperiment

Stefan Knirck* for the MADMAX collaboration

CEA-IRFU, Saclay, France * Max-Planck-Institut für Physik, Munich, Germany University of Hamburg, Hamburg, Germany Max-Planck-Institut für Radioastronomie, Bonn, Germany DESY, Hamburg, Germany University of Zaragoza, Spain

Max-Planck-Institut für Physik (Wener-Heisenberg-Institut)

The Strong CP-Problem

QCD allows for a term

$$\mathcal{L} = - \ \theta \frac{g_S}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a, \qquad \theta = -\pi \ \dots \ \pi$$

but experimentally: $|\theta| < 10^{-10}$ (neutron electric dipole moment)

The Strong CP-Problem

make θ a dynamic field: $\theta \rightarrow a(t; \mathbf{x})$ (Pecci-Quinn 1977)

$${\cal L}=-~a{gs\over 32\pi^2}G^a_{\mu
u}{ ilde G}^{\mu
u}_a~~+~~{1\over 2}~\partial_\mu$$
a $~\partial^\mu$ a

rolldown to CP conserving limit:

The Axion - Parameterspace

The Axion - Parameterspace

Axion Electrodynamics

$$\mathcal{L}=-rac{1}{4} F_{\mu
u}F^{\mu
u}-j^{\mu}A_{\mu}+rac{1}{2}\partial_{\mu}a\;\partial^{\mu}a-rac{1}{2}m_{a}^{2}a^{2}\;\;-\;\;rac{g_{a\gamma}}{4}a\;F_{\mu
u} ilde{F}^{\mu
u}$$

$$m_a\sim 30\,\mu {
m eV}$$
, non-relativistic

$$\Rightarrow \lambda_{
m DB} = rac{2\pi}{p} \sim rac{2\pi}{10^{-3}m_a} \sim 10~{
m m}$$

MADMAX: MAgnetised Disk-and-Mirror Axion eXperiment

Axion Electrodynamics

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - j^{\mu}A_{\mu} + \frac{1}{2}\partial_{\mu}a \ \partial^{\mu}a - \frac{1}{2}m_{a}^{2}a^{2} \ - \ \frac{g_{a\gamma}}{4}a \ F_{\mu\nu}\tilde{F}^{\mu\nu}$$

Solve EOM under external magnetic field \mathbf{B}_e :

$$\epsilon \nabla \cdot \mathbf{E} = \rho - g_{a\gamma} \mathbf{B}_e \cdot \nabla a$$
$$\nabla \times \mathbf{H} - \dot{\mathbf{E}} = \mathbf{J} + g_{a\gamma} \mathbf{B}_e \dot{a}$$
$$\ddot{a} - \nabla^2 a + m_a^2 a = g_{a\gamma} \mathbf{E} \cdot \mathbf{B}_e$$

Axion induced electric field:

$$\mathbf{E}_{\mathbf{a}} = -\frac{g_{\mathbf{a}\gamma}\mathbf{B}_{e}}{\epsilon}\mathbf{a} = 1.3 \times 10^{-12} \,\mathrm{V} \,\mathrm{m}^{-1} \times \left(\frac{B_{e}}{10 \,\mathrm{T}}\right) \frac{C_{\mathbf{a}\gamma}f_{DM}^{1/2}}{\epsilon}$$

$$P_{
m sig} = \left(B^2 Q \ V \ C_{nml}
ight) \left(g_{a\gamma\gamma}^2 m_a \rho_a
ight)$$

Q: Quality Factor, C_{nml}: mode factor

The MADMAX Idea

The MADMAX Idea

Power Boost Factor β^2 –

adjust disc spacings:

Wide Bandwidth Boost Factor of $10^4 - 10^5$ Possible

Power Boost Factor β^2

adjust disc spacings:

Frequency Band Tunable

parabolic mirror

~10K cryogenic enviroment (?)

Probing the Boost Factor – Idea

Boost Factor \leftrightarrow Reflectivity / Group Delay Corellation

Detection Idea

R&D Efforts

Outlook & Conclusion

Probing the Boost Factor

MADMAX: MAgnetised Disk-and-Mirror Axion eXperiment

Probing the Boost Factor – Preliminary Results

Predicted Electromagnetic Response Demonstrated

MADMAX: MAgnetised Disk-and-Mirror Axion eXperiment

Probing the Boost Factor – Preliminary Results

Predicted Electromagnetic Response Demonstrated

MADMAX: MAgnetised Disk-and-Mirror Axion eXperiment

Probing the Boost Factor – Preliminary Results

Predicted Electromagnetic Response Demonstrated

MADMAX: MAgnetised Disk-and-Mirror Axion eXperiment

Probing the Boost Factor – Systematics

Physical Understanding / Modeling Needed

20 Disc Setup

Simulations

Simulations

MADMAX: MAgnetised Disk-and-Mirror Axion eXperiment

Simulations

 $\Rightarrow \mathsf{Near}\ \mathsf{Fields}$

Newly Founded MADMAX collaboration

Roadmap

19 Oct 2017: collaboration forming: DESY; Univ. of Hamburg; CEA-IRFU, Saclay; MPI für Radioastronomie, Bonn; Univ. of Zaragoza ongoing: magnet design studies: $B^2 A \approx 100 \text{ T}^2 \text{ m}^2$ (two independent partners) **R&D:** on mechanics, LaAlO₃ dielectric plates, noise contribution of booster, receiver booster studies: 20 disc seed setup, 3D simulations in 2-4 years: **20 disc prototype:** $\emptyset_{\text{disc}} \approx 30 \text{ cm}, B = 3 - 4 \text{ T}$ \Rightarrow first physics results

afterwards (2022?): full scale experiment

Conclusions

for more information:

MADMAX collaboration white paper,

Phys. Rev. Lett. 118, 091801, JCAP 1701:061,2017

MADMAX: MAgnetised Disk-and-Mirror Axion eXperiment

Axions

Thank You very much

for more information:

MADMAX collaboration white paper,

Phys. Rev. Lett. 118, 091801, JCAP 1701:061,2017

MADMAX: MAgnetised Disk-and-Mirror Axion eXperiment

Pecci-Quinn Symmetry Breaking...

Boost Factor and Disc Number

Boost Factor Corellation

80 discs

Dielectric Materials

- High dielectric constant ε (for large boost & conversion)
 - Low loss \rightarrow low tan δ (reduce photon losses)

Stable

Cheap

 \rightarrow Sapphire (Al₂O₃) @ 300K, 10 GHz:

$$\varepsilon \sim 10;$$
 tan $\delta \sim few \cdot 10^{-5}$

→ Lanthanide Aluminate (LaAlO₃) @ 77K $\epsilon \sim 24$: tan $\delta \sim 3 \cdot 10^{-5}$

→ Titanium dioxide – Rutil (TiO₂) $\epsilon \sim 100;$ tan $\delta \sim ???$

Receiver System

Receiver System

with preamp @ 4K: signal down to $\sim 10^{-23}\,W$ detected

Optimizing the Boost Factor

Area under Boost Factor curve approximately conserved

Align Discs to Match Group Delay

E.g. Spacings Reproducibility for 3 equidistant discs:

