Extraction of the top quark mass in ATLAS: Theory meets experiment

Ludovic Scyboz

IMPRS Kolloquium

MPP

26th April 2018
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Mass measurements</th>
<th>The template method</th>
<th>Backup</th>
</tr>
</thead>
</table>

Introduction
Top quark discovery

- Bottom quark discovered in 1977 at Fermilab
Top quark discovery

- Bottom quark discovered in 1977 at Fermilab
- Missing isospin partner
Top quark discovery

- Bottom quark discovered in 1977 at Fermilab
- Missing isospin partner
- Predictions for m_t from e.g. electroweak sector
Top quark discovery

- Bottom quark discovered in 1977 at Fermilab
- Missing isospin partner
- Predictions for m_t from e.g. electroweak sector

- Top quark discovered 18 years later at CDF and DØ!
Top quark discovery

- Bottom quark discovered in 1977 at Fermilab
- Missing isospin partner
- Predictions for m_t from e.g. electroweak sector

- Top quark discovered 18 years later at CDF and DØ!

LHC $\simeq 80$M top pairs produced
A top factory

80M top pairs!
Precision m_t measurements: motivation

- Top mass m_t: parameter in SM
- Heaviest elementary particle
Precision m_t measurements: motivation

- Top mass m_t: parameter in SM
- Heaviest elementary particle
 - Radiative corrections to Higgs effective potential
Precision m_t measurements: motivation

- Top mass m_t: parameter in SM
- Heaviest elementary particle
 - Radiative corrections to Higgs effective potential
 - Electroweak parameter fits (m_W, θ_W)
Precision m_t measurements: motivation

- Top mass m_t: parameter in SM
- Heaviest elementary particle
 - Radiative corrections to Higgs effective potential
 - Electroweak parameter fits (m_W, θ_W)
 - Important background in BSM searches
Theorists and experimentalists

Why is my friend acting so passive-aggressive towards me?
Mass measurements
Mass reconstruction

- Decayed particle: reconstruct 4-momentum from decay products
Mass reconstruction

- Decayed particle: reconstruct 4-momentum from decay products
 - $J/\Psi \rightarrow \mu^+ \mu^-$
Mass reconstruction

- Decayed particle: reconstruct 4-momentum from decay products
 - $J/\psi \rightarrow \mu^+ \mu^-$
 - $Z \rightarrow \mu^+ \mu^-$

ATLAS
s = 8 TeV, 11.4 fb⁻¹
$|y(J/\psi)| < 1.05$
Mass reconstruction

- Decayed particle: reconstruct 4-momentum from decay products
 - $J/\Psi \rightarrow \mu^+ \mu^-$
 - $Z \rightarrow \mu^+ \mu^-$
 - $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4\ell$
 - ...

![Graph showing mass reconstruction](image)
Mass reconstruction

- Decayed particle: reconstruct 4-momentum from decay products
 - $J/\psi \rightarrow \mu^+\mu^-$
 - $Z \rightarrow \mu^+\mu^-$
 - $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ \rightarrow 4\ell$
 - ...

- Tradeoff

$$\Gamma(\text{decay}) \leftrightarrow \frac{S}{B}, \text{ resolution, ...}$$
Decayed particle: reconstruct 4-momentum from decay products
- $J/\psi \rightarrow \mu^+\mu^-$
- $Z \rightarrow \mu^+\mu^-$
- $H \rightarrow \gamma\gamma, H \rightarrow ZZ \rightarrow 4\ell$
- ...

Tradeoff

$\Gamma(\text{decay}) \leftrightarrow \frac{S}{B}$, resolution, ...

\rightarrow Top decay reconstruction

ATLAS

$s = 8$ TeV, 11.4 fb$^{-1}$

$|y(J/\psi)| < 1.05$

- Data

Entries / 0.04 GeV

8/23 – m_t extraction @ ATLAS – Ludovic Scyboz
Top pair production: event topology

- Top decay: $\Gamma(t \to Wb) = 0.998$
 - $\Gamma(W \to q \bar{q}') = 0.67$
 - $\Gamma(W \to \ell \nu_\ell) = 0.33$
Top pair production: event topology

- Top decay: $\Gamma(t \rightarrow Wb) = 0.998$
 - $\Gamma(W \rightarrow q \bar{q}') = 0.67$
 - $\Gamma(W \rightarrow \ell \nu_\ell) = 0.33$
Top quark pair production @ ATLAS
Top pair production: event topology

- Top decay: $\Gamma(t \rightarrow Wb) = 0.998$
 - $\Gamma(W \rightarrow q \bar{q'}) = 0.67$
 - $\Gamma(W \rightarrow \ell \nu_\ell) = 0.33$
Top pair production: event topology

- Top decay: $\Gamma(t \rightarrow Wb) = 0.998$
 - $\Gamma(W \rightarrow q \bar{q}') = 0.67$
 - $\Gamma(W \rightarrow \ell \nu_\ell) = 0.33$

- Event selection:
 - All-hadronic
 + Largest branching fraction
 - QCD background
Top pair production: event topology

- **Top decay:** $\Gamma(t \rightarrow Wb) = 0.998$
 - $\Gamma(W \rightarrow q \bar{q}') = 0.67$
 - $\Gamma(W \rightarrow \ell \nu_{\ell}) = 0.33$

- **Event selection:**
 - **All-hadronic**
 - Largest branching fraction
 - QCD background
 - $\ell + \text{jets}$
 - Full reconstruction possible
 - Jet energy scale uncertainty

\[\sim 46\%\]
\[\sim 29\%\]
\[\sim 4.5\%\]
Top pair production: event topology

- Top decay: $\Gamma(t \rightarrow Wb) = 0.998$
 - $\Gamma(W \rightarrow q \bar{q}') = 0.67$
 - $\Gamma(W \rightarrow \ell \nu_{\ell}) = 0.33$

- Event selection:
 - All-hadronic
 + Largest branching fraction
 - QCD background
 - $\ell +$ jets
 + Full reconstruction possible
 - Jet energy scale uncertainty
 - Dilepton
 + Clean signature
 - No full reconstruction

$\sim 46\%$ for all-hadronic, $\sim 29\%$ for dilepton.
Event selection

All-hadronic

\[t\bar{t} \rightarrow qqqqbb \]

≥ 4 light jets
0 id. leptons

ℓ + jets

\[t\bar{t} \rightarrow ℓνqqbb \]

≥ 2 light jets
1 id. lepton
MET

Dilepton

\[t\bar{t} \rightarrow ℓ⁺ℓ⁻νbb \]

≥ 0 id. leptons
MET

≥ 2 id. leptons

\[\geq 4 \text{ light jets} \]
\[= 1 \text{ id. lepton} \]
\[= 2 \text{ id. leptons} \]
The template method
1. Choose distributions sensitive to the top-quark mass
1. Choose distributions sensitive to the top-quark mass

2. Generate distributions for different input m_t^{in}:

$$m_t^{in} \in [165.0, 172.5, 180.0] \text{ GeV}$$
General idea

1. Choose distributions sensitive to the top-quark mass

2. Generate distributions for different input m_t^{in}:

 $m_t^{in} \in [165.0, 172.5, 180.0]$ GeV

3. Fit the data to extract m_t^{in}
1. Choose $m_{lb}^2 = (p_\ell + p_b)^2$

Simple example: dilepton channel @ 8 TeV

1. Choose $m_{\ell b}^2 = (p_\ell + p_b)^2$

2. Generate distributions for different input m_t^{in}:

 $m_t^{in} \in [167.5, 172.5, 177.5] \text{ GeV}$
Simple example: dilepton channel @ 8 TeV

1. Choose $m_{lb}^2 = (p_\ell + p_b)^2$

2. Generate distributions for different input m_t^{in}:

 $m_t^{in} \in [167.5, 172.5, 177.5] \text{ GeV}$

3. Fit the data
Simple example: dilepton channel @ 8 TeV

1. Choose $m_{lb}^2 = (p_\ell + p_b)^2$

2. Generate distributions for different input m_t^{in}:

 $m_t^{\text{in}} \in [167.5, 172.5, 177.5] \text{ GeV}$

3. Fit the data

 $m_t = 172.99 \pm 0.41(\text{stat}) \text{ GeV}$
A more complex example: $\ell + \text{jets} @ 7 \text{ TeV}$

Jet energy scale (JES)

- From 7 TeV analysis:

- JES, b-JES are the largest systematic uncert.

<table>
<thead>
<tr>
<th>Measured value of m_{top}</th>
<th>$e+$jets</th>
<th>$\mu+$jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data statistics</td>
<td>1.46</td>
<td>1.13</td>
</tr>
<tr>
<td>Jet energy scale factor</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Method calibration</td>
<td>0.07</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Signal MC generator</td>
<td>0.81</td>
<td>0.69</td>
</tr>
<tr>
<td>Hadronisation</td>
<td>0.33</td>
<td>0.52</td>
</tr>
<tr>
<td>Pileup</td>
<td>< 0.05</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Underlying event</td>
<td>0.06</td>
<td>0.10</td>
</tr>
<tr>
<td>Colour reconnection</td>
<td>0.47</td>
<td>0.74</td>
</tr>
<tr>
<td>ISR and FSR (signal only)</td>
<td>1.45</td>
<td>1.40</td>
</tr>
<tr>
<td>Proton PDF</td>
<td>0.22</td>
<td>0.09</td>
</tr>
<tr>
<td>$W+$jets background normalisation</td>
<td>0.16</td>
<td>0.19</td>
</tr>
<tr>
<td>$W+$jets background shape</td>
<td>0.11</td>
<td>0.18</td>
</tr>
<tr>
<td>QCD multijet background normalisation</td>
<td>0.07</td>
<td>< 0.05</td>
</tr>
<tr>
<td>QCD multijet background shape</td>
<td>0.14</td>
<td>0.12</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>1.21</td>
<td>1.25</td>
</tr>
<tr>
<td>b-jet energy scale</td>
<td>1.09</td>
<td>1.21</td>
</tr>
<tr>
<td>b-tagging efficiency and mistag rate</td>
<td>0.21</td>
<td>0.13</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>0.34</td>
<td>0.38</td>
</tr>
<tr>
<td>Jet reconstruction efficiency</td>
<td>0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>Missing transverse momentum</td>
<td>< 0.05</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>2.46</td>
<td>2.56</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>2.86</td>
<td>2.80</td>
</tr>
</tbody>
</table>
Jet energy calibration

- Jets energy measured by hadron calorimeter deposits
Jet energy calibration

- Jets energy measured by hadron calorimeter deposits
- Not 100% effective → correction factors
Jet energy calibration

- Jets energy measured by hadron calorimeter deposits
- Not 100% effective \rightarrow correction factors
 - MC simulation: $\text{JES} = \frac{E_{\text{MC}}}{E_{\text{meas}}}$
Jet energy calibration

- Jets energy measured by hadron calorimeter deposits
- Not 100% effective \rightarrow correction factors
 - MC simulation: $\text{JES} = \frac{E_{\text{MC}}}{E_{\text{meas}}}$
 - ...

...
Jet energy calibration

- Jets energy measured by hadron calorimeter deposits
- Not 100% effective \rightarrow correction factors
 - MC simulation: $\text{JES} = \frac{E_{MC}}{E_{\text{meas}}}$
 - ...

![Graph showing jet energy calibration results](image)
Jet energy calibration

- Jets energy measured by hadron calorimeter deposits
- Not 100% effective \rightarrow correction factors
 - MC simulation: $\text{JES} = \frac{E_{MC}}{E_{\text{meas}}}$
 - ...

\[R_{\text{DATA}}/R_{\text{MC}} \]

\[R_{\text{DATA}} = \frac{E_{\text{DATA}}}{E_{\text{MC}}} \]

\[R_{\text{MC}} = \frac{E_{\text{MC}}}{E_{\text{MC}}} \]

\[E_{\text{DATA}} \]

\[E_{\text{MC}} \]

\[\text{JES} = \frac{E_{\text{MC}}}{E_{\text{meas}}} \]

\[\text{MC simulation: } \text{JES} = \frac{E_{\text{MC}}}{E_{\text{meas}}} \]

\[\text{...} \]
Jet energy calibration

- Jets energy measured by hadron calorimeter deposits
- Not 100% effective → correction factors
 - MC simulation: \(\text{JES} = \frac{E_{\text{MC}}}{E_{\text{meas}}} \)
 - ...
- Different correction for light–/b–jets
Jet energy calibration

- Jets energy measured by hadron calorimeter deposits
- Not 100% effective → correction factors
 - MC simulation: $\text{JES} = \frac{E_{MC}}{E_{\text{meas}}}$
 - ...
- Different correction for light−/b−jets
 - Jet scale factor (JSF)
 - b−jet scale factor (bJSF)
A more complex example: $\ell + \text{jets} @ 8 \text{ TeV}$

★ From 7 TeV analysis:

- JES, b-JES are the largest systematic uncertainty

<table>
<thead>
<tr>
<th>Measured value of m_{top}</th>
<th>$e+$jets</th>
<th>$\mu+$jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data statistics</td>
<td>1.46</td>
<td>1.13</td>
</tr>
<tr>
<td>Jet energy scale factor</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Method calibration</td>
<td>0.07</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Signal MC generator</td>
<td>0.81</td>
<td>0.69</td>
</tr>
<tr>
<td>Hadronisation</td>
<td>0.33</td>
<td>0.52</td>
</tr>
<tr>
<td>Pileup</td>
<td>< 0.05</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Underlying event</td>
<td>0.06</td>
<td>0.10</td>
</tr>
<tr>
<td>Colour reconnection</td>
<td>0.47</td>
<td>0.74</td>
</tr>
<tr>
<td>ISR and FSR (signal only)</td>
<td>1.45</td>
<td>1.40</td>
</tr>
<tr>
<td>Proton PDF</td>
<td>0.22</td>
<td>0.09</td>
</tr>
<tr>
<td>$W+$jets background normalisation</td>
<td>0.16</td>
<td>0.19</td>
</tr>
<tr>
<td>$W+$jets background shape</td>
<td>0.11</td>
<td>0.18</td>
</tr>
<tr>
<td>QCD multijet background normalisation</td>
<td>0.07</td>
<td>< 0.05</td>
</tr>
<tr>
<td>QCD multijet background shape</td>
<td>0.14</td>
<td>0.12</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>1.21</td>
<td>1.25</td>
</tr>
<tr>
<td>b-jet energy scale</td>
<td>1.09</td>
<td>1.21</td>
</tr>
<tr>
<td>b-tagging efficiency and mistag rate</td>
<td>0.21</td>
<td>0.13</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>0.34</td>
<td>0.38</td>
</tr>
<tr>
<td>Jet reconstruction efficiency</td>
<td>0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>Missing transverse momentum</td>
<td>< 0.05</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>2.46</td>
<td>2.56</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>2.86</td>
<td>2.80</td>
</tr>
</tbody>
</table>
A more complex example: $\ell + \text{jets} \oplus 8 \text{ TeV}$

From 7 TeV analysis:
- JES, b-JES are the largest systematic uncertainty

Idea: Add distributions sensitive to JSF, b-JSF

<table>
<thead>
<tr>
<th>Measured value of m_{top}</th>
<th>$e+\text{jets}$</th>
<th>$\mu+\text{jets}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data statistics</td>
<td>1.46</td>
<td>1.13</td>
</tr>
<tr>
<td>Jet energy scale factor</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Method calibration</td>
<td>0.07</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Signal MC generator</td>
<td>0.81</td>
<td>0.69</td>
</tr>
<tr>
<td>Hadronisation</td>
<td>0.33</td>
<td>0.52</td>
</tr>
<tr>
<td>Pileup</td>
<td>< 0.05</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Underlying event</td>
<td>0.06</td>
<td>0.10</td>
</tr>
<tr>
<td>Colour reconnection</td>
<td>0.47</td>
<td>0.74</td>
</tr>
<tr>
<td>ISR and FSR (signal only)</td>
<td>1.45</td>
<td>1.40</td>
</tr>
<tr>
<td>Proton PDF</td>
<td>0.22</td>
<td>0.09</td>
</tr>
<tr>
<td>$W+\text{jets}$ background normalisation</td>
<td>0.16</td>
<td>0.19</td>
</tr>
<tr>
<td>$W+\text{jets}$ background shape</td>
<td>0.11</td>
<td>0.18</td>
</tr>
<tr>
<td>QCD multijet background normalisation</td>
<td>0.07</td>
<td>< 0.05</td>
</tr>
<tr>
<td>QCD multijet background shape</td>
<td>0.14</td>
<td>0.12</td>
</tr>
<tr>
<td>b-jet energy scale</td>
<td>1.21</td>
<td>1.25</td>
</tr>
<tr>
<td>b-jet energy scale</td>
<td>1.09</td>
<td>1.21</td>
</tr>
<tr>
<td>b-tagging efficiency and mistag rate</td>
<td>0.21</td>
<td>0.13</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>0.34</td>
<td>0.38</td>
</tr>
<tr>
<td>Jet reconstruction efficiency</td>
<td>0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>Missing transverse momentum</td>
<td>< 0.05</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>2.46</td>
<td>2.56</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>2.86</td>
<td>2.80</td>
</tr>
</tbody>
</table>
A more complex example: $\ell + \text{jets} @ 8 \text{ TeV}$

- **From 7 TeV analysis:**
 - JES, b-JES are the largest systematic uncertainty

 - **Idea:** Add distributions sensitive to JSF, b-JSF

 - Determine m_t^{in}, JSF, bJSF in a combined fit

<table>
<thead>
<tr>
<th>Measured value of m_{top}</th>
<th>$e^+\text{jets}$</th>
<th>$\mu^+\text{jets}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data statistics</td>
<td>1.46</td>
<td>1.13</td>
</tr>
<tr>
<td>Jet energy scale factor</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Method calibration</td>
<td>0.07</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Signal MC generator</td>
<td>0.81</td>
<td>0.69</td>
</tr>
<tr>
<td>Hadronisation</td>
<td>0.33</td>
<td>0.52</td>
</tr>
<tr>
<td>Pileup</td>
<td>< 0.05</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Underlying event</td>
<td>0.06</td>
<td>0.10</td>
</tr>
<tr>
<td>Colour reconnection</td>
<td>0.47</td>
<td>0.74</td>
</tr>
<tr>
<td>ISR and FSR (signal only)</td>
<td>1.45</td>
<td>1.40</td>
</tr>
<tr>
<td>Proton PDF</td>
<td>0.22</td>
<td>0.09</td>
</tr>
<tr>
<td>$W+\text{jets}$ background</td>
<td>0.16</td>
<td>0.19</td>
</tr>
<tr>
<td>$W+\text{jets}$ background shape</td>
<td>0.11</td>
<td>0.18</td>
</tr>
<tr>
<td>QCD multijet background</td>
<td>0.07</td>
<td>< 0.05</td>
</tr>
<tr>
<td>QCD multijet background shape</td>
<td>0.14</td>
<td>0.12</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>1.21</td>
<td>1.25</td>
</tr>
<tr>
<td>b-jet energy scale</td>
<td>1.09</td>
<td>1.21</td>
</tr>
<tr>
<td>b-tagging efficiency and mistag rate</td>
<td>0.21</td>
<td>0.13</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>0.34</td>
<td>0.38</td>
</tr>
<tr>
<td>Jet reconstruction efficiency</td>
<td>0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>Missing transverse momentum</td>
<td>< 0.05</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>2.46</td>
<td>2.56</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>2.86</td>
<td>2.80</td>
</tr>
</tbody>
</table>
\(\ell + \text{jets} @ 8 \text{ TeV} \)

- 3 parameters to fit: \(m_t^{\text{in}} \), JSF, bJSF
- 3 distributions sensitive to them:
 - Reco. top mass \(m_t^{\text{reco}} \propto m_t^{\text{in}}, \text{JSF}, \text{bJSF} \)
 - Reco. \(W \) mass \(m_W^{\text{reco}} \propto \text{JSF} \)
 - \(R_{bq} = \frac{p_T,b_1+p_T,b_2}{p_T,j_1+p_T,j_2} \propto m_t^{\text{in}}, \text{bJSF} \)
\(\ell + \text{jets} \, @ \, 8 \, \text{TeV} \)

- 3 parameters to fit: \(m_{t}^{\text{in}} \), JSF, bJSF
- 3 distributions sensitive to them:
 - Reco. top mass \(m_{t}^{\text{reco}} \propto m_{t}^{\text{in}}, \text{JSF}, \text{bJSF} \)
 - Reco. W mass \(m_{W}^{\text{reco}} \propto \text{JSF} \)
 - \(R_{bq} = \frac{p_{T,b_{1}} + p_{T,b_{2}}}{p_{T,j_{1}} + p_{T,j_{2}}} \propto m_{t}^{\text{in}}, \text{bJSF} \)

(a) \(m_{\text{top}}^{\text{reco}} \) as a function of \(m_{\text{top}} \)
(b) \(m_{W}^{\text{reco}} \) as a function of JSF
(c) \(m_{W}^{\text{reco}} \) as a function of JSF
(d) \(R_{bq}^{\text{reco}} \) as a function of bJSF
$\ell + \text{jets} @ 8 \text{ TeV}: \text{fit results}$

- Determine values for the three parameters in a simultaneous fit

\[
\begin{align*}
 m_t &= 172.08 \pm 0.39(\text{stat}) \text{ GeV} \\
 \text{JSF} &= 1.005 \pm 0.001(\text{stat}) \\
 b\text{JSF} &= 1.008 \pm 0.005(\text{stat})
\end{align*}
\]
ATLAS Top mass results

Successive combination

\[m_{\text{top}}^{\text{dil}} \ (8 \text{ TeV}) \]
\[+ m_{\text{top}}^{\text{l+jets}} \ (8 \text{ TeV}) \]
\[+ m_{\text{top}}^{\text{l+jets}} \ (7 \text{ TeV})^* \]
\[+ m_{\text{top}}^{\text{dil}} \ (7 \text{ TeV}) \]

ATLAS Preliminary

\[m_{\text{top}} \pm \text{stat.} \pm \text{syst.} \]
\[172.99 \pm 0.41 \pm 0.74 \]
\[172.56 \pm 0.28 \pm 0.48 \]
\[172.51 \pm 0.27 \pm 0.42 \]
\[172.50 \pm 0.27 \pm 0.42 \]

Notes:
- *ATLAS Combination
- stat. uncertainty
- total uncertainty

21/23 – \(m_t \) extraction @ ATLAS – Ludovic Scyboz
Conclusions

- Precise experimental input needed for theory predictions
 - Top mass = one of the most important parameters of the SM
 - The LHC is a very good top quark producer
Conclusions

- Precise experimental input needed for theory predictions
 - Top mass = one of the most important parameters of the SM
 - The LHC is a very good top quark producer

- **Reconstruct** the top kinematics from its decay products
Conclusions

- Precise experimental input needed for theory predictions
 - Top mass = one of the most important parameters of the SM
 - The LHC is a very good top quark producer

- **Reconstruct** the top kinematics from its decay products
- **Find** a nice decay channel for your needs
Conclusions

- Precise experimental input needed for theory predictions
 - Top mass = one of the most important parameters of the SM
 - The LHC is a very good top quark producer

- **Reconstruct** the top kinematics from its decay products
- **Find** a nice decay channel for your needs
- **Be imaginative** and try to make the most of the information coming out of your detector
Conclusions

- Precise experimental input needed for theory predictions
 - Top mass = one of the most important parameters of the SM
 - The LHC is a very good top quark producer

- **Reconstruct** the top kinematics from its decay products
- **Find** a nice decay channel for your needs
- **Be imaginative** and try to make the most of the information coming out of your detector

Thank you!
Results summary

<table>
<thead>
<tr>
<th>Pseudo-data</th>
<th>Calibration</th>
<th>m_{lb}</th>
<th>m_{T^2}</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLO$^{\text{LOdec}}_{\text{NWA}}$</td>
<td>LO$^{\text{LOdec}}_{\text{NWA}}$</td>
<td>+0.51 ± 0.06</td>
<td>+0.48 ± 0.04</td>
<td>0.17</td>
</tr>
<tr>
<td>NLO$^{\text{LOdec}}_{\text{NWA}}$</td>
<td>LO$^{\text{LOdec}}_{\text{NWA}}$</td>
<td>−1.80 ± 0.06</td>
<td>−1.67 ± 0.04</td>
<td>3.25</td>
</tr>
<tr>
<td>NLO$^{\text{NLOdec}}_{\text{NWA}}$</td>
<td>LO$^{\text{LOdec}}_{\text{NWA}}$</td>
<td>−1.38 ± 0.07</td>
<td>−1.24 ± 0.05</td>
<td>2.65</td>
</tr>
<tr>
<td>NLO$^{\text{full}}_{\text{NWA}}$</td>
<td>LO$^{\text{full}}$</td>
<td>−1.52 ± 0.07</td>
<td>−1.62 ± 0.05</td>
<td>1.35</td>
</tr>
<tr>
<td>NLO$^{\text{full}}_{\text{NWA}}$</td>
<td>NLO$^{\text{NLOdec}}_{\text{NWA}}$</td>
<td>+0.83 ± 0.07</td>
<td>+0.60 ± 0.06</td>
<td>6.22</td>
</tr>
<tr>
<td>NLO$^{\text{full}}_{\text{NWA}}$</td>
<td>NLO$^{\text{PS}}$</td>
<td>+2.55 ± 0.07</td>
<td>+2.38 ± 0.06</td>
<td>3.40</td>
</tr>
<tr>
<td>NLO$^{\text{PS}}_{\text{NWA}}$</td>
<td>NLO$^{\text{LOdec}}_{\text{NWA}}$</td>
<td>−3.43 ± 0.07</td>
<td>−3.62 ± 0.06</td>
<td>4.25</td>
</tr>
<tr>
<td>NLO$^{\text{PS}}_{\text{NWA}}$</td>
<td>NLO$^{\text{NLOdec}}_{\text{NWA}}$</td>
<td>−1.60 ± 0.07</td>
<td>−1.67 ± 0.06</td>
<td>0.58</td>
</tr>
<tr>
<td>NLO$^{\text{PS}}_{\text{NWA}}$</td>
<td>NLO$^{\text{PS}}(\mu_{t\bar{t}})$</td>
<td>−0.07 ± 0.07</td>
<td>−0.05 ± 0.06</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Table: Summary of the offsets observed when analysing pseudo-data listed in the first column with template fit functions calibrated based on various theoretical predictions as given in the second column.