Introduction

Gauge boson observations Theoretical difficulties Possible solution?

Higgs Mechanism Higgs potential Benefits

EW Phase

Why Higgs?

Viktor Papara

Max-Planck-Institut für Physik

IMPRS Colloquium, April 2018

Where do we start?

Gauge boson observations Theoretical

Higgs Higgs potential Benefits

EW Phase

• Experiments: W^{\pm} and Z look like gauge bosons: only couple via covariant derivative

Where do we start?

Introduction

Gauge boson observations Theoretical difficulties Possible solution?

Higgs Mechanism Higgs potential Benefits EW Phase • Experiments: W^{\pm} and Z look like gauge bosons: only couple via covariant derivative

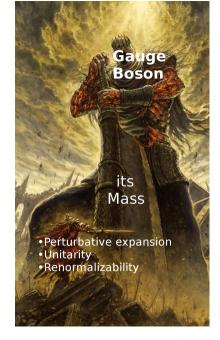
• They are massive

Where do we start?

Gauge boson observations

Benefits

- Experiments: W^{\pm} and Z look like gauge bosons: only couple via covariant derivative
- They are massive
 - Break perturbative expansion
 - Break unitarity
 - Break renormalizability
- What about gauge?
 - Gauge invariance still present but hidden
 - Naive theory with massive gauge bosons = pre-chosen gauge


Introduction

Gauge boson observations Theoretical

Possible solution?

Higgs Mechanism

Higgs potential Benefits

Fermion Masses

Gauge boson Theoretical difficulties

Higgs Higgs potential

Benefits EW Phase • Dirac mass = left-handed \cdot right-handed states

Fermion Masses

Introduction

Gauge boson observations Theoretical difficulties

Possible solution?

Higgs Mechanism Higgs potential Benefits

EW Phase

• Weak force chiral: different treatment of left- and right-handed states

Fermion Masses

Introduction
Gauge boson
observations
Theoretical

difficulties Possible solution? Intermezzo

Higgs Mechanism Higgs potential Benefits

EW Phase Transition Dirac mass = left-handed \cdot right-handed states

• Weak force chiral: different treatment of left- and right-handed states

• \rightarrow Dirac mass breaks symmetry!

Introduction

Gauge boson observations Theoretical difficulties

Possible solution?

Higgs

Higgs potential Benefits

Introduction

Gauge boson observations Theoretical difficulties

Possible solution? Intermezzo

Higgs Mechanism Higgs potential Benefits

EW Phase Transition What about effective theories?

Introduction

Gauge boson observations Theoretical difficulties

Possible solution?

termezz

Higgs

Higgs potential Benefits

EW Phase

What about effective theories?

- EFTs have range of validity
- Beyond that, they break down
- They "ignore" fundamental fields

Introduction

Gauge boson observations Theoretical difficulties

solution?

Higgs Machanian

Higgs potentis Benefits

EW Phase Transition

What about effective theories?

- EFTs have range of validity
- Beyond that, they break down
- They "ignore" fundamental fields
- Field to "ignore": Higgs
- Problems:
 - Higgs is tricky to "ignore"
 - Higgs mass \sim Weak interaction Energy
- \rightarrow Bad approximation!

(Symmetry) groups for lazy physicits

Introduction

Gauge boson observations Theoretical difficulties Possible solution?

Intermezzo

Higgs Mechanism Higgs potential Benefits

Benefits
EW Phase

Groups are transformations: operations on <something>
 <object> → <object'> of same kind

(Symmetry) groups for lazy physicits

Introduction

Gauge boson observations Theoretical difficulties Possible solution? Intermezzo

Higgs Mechanism Higgs potentis Benefits

- Groups are transformations: operations on <something>
 <object> → <object'> of same kind
- Groups have different representations Both group operation and <object>

(Symmetry) groups for lazy physicits

Introduction

Gauge boson observations Theoretical difficulties Possible solution? Intermezzo

Intermezz

Higgs Mechanism Higgs potentia Benefits

- Groups are transformations: operations on <something> <object> → <object'> of same kind
- Groups have different representations Both group operation and <object>
- Super useful model: carthesian representation of ordinary vectors

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

(Symmetry) groups for lazy physicits

Introduction

Gauge boson observations Theoretical difficulties Possible solution? Intermezzo

Higgs Mechanism Higgs potentis Benefits

EW Phase Transition

- Groups are transformations: operations on <something> <object> → <object'> of same kind
- Groups have different representations Both group operation and <object>
- Super useful model: carthesian representation of ordinary vectors

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

• We can only calculate with representations!

Introduction

Gauge boso observation: Theoretical difficulties Possible solution? Intermezzo

Higgs Mechanism

Higgs potential Benefits

EW Phase

• Lagrangian invariant under symmetry

Introduction

Gauge boson observations Theoretical difficulties Possible solution? Intermezzo

Higgs Mechanism

Higgs potential Benefits

- Lagrangian invariant under symmetry
 - $\bullet \;$ Including Higgs Potential

Introduction

Gauge boson observations Theoretical difficulties Possible solution? Intermezzo

Higgs Mechanism

Higgs potential Benefits

- Lagrangian invariant under symmetry
 - Including Higgs Potential
- But minimum of potential not zero

Introduction

observation
Theoretical
difficulties
Possible
solution?
Intermezzo

Higgs Mechanism

Higgs potentia Benefits

- Lagrangian invariant under symmetry
 - Including Higgs Potential
- But minimum of potential not zero
- → Vacuum expectation value of Higgs doublet not invariant under symmetry:

Introduction

observation Theoretical difficulties Possible solution? Intermezzo

Higgs Mechanism

Higgs potentia Benefits

- Lagrangian invariant under symmetry
 - Including Higgs Potential
- But minimum of potential not zero
- → Vacuum expectation value of Higgs doublet not invariant under symmetry:
- Expand fields around (symmetry breaking) vacuum

Introduction

observation
Theoretical
difficulties
Possible
solution?
Intermezzo

Higgs Mechanism

Higgs potentia Benefits

- Lagrangian invariant under symmetry
 - Including Higgs Potential
- But minimum of potential not zero
- → Vacuum expectation value of Higgs doublet not invariant under symmetry:
- Expand fields around (symmetry breaking) vacuum
- Include interactions between higgs doublet and other fields

Introduction

observation
Theoretical
difficulties
Possible
solution?
Intermezzo

Higgs Mechanism

Higgs potentia Benefits

- Lagrangian invariant under symmetry
 - Including Higgs Potential
- But minimum of potential not zero
- → Vacuum expectation value of Higgs doublet not invariant under symmetry:
- Expand fields around (symmetry breaking) vacuum
- Include interactions between higgs doublet and other fields
- \bullet \to Get "effective" terms like mass terms

Higgs: Extra field

T / 1 /

Gauge boson observations Theoretical difficulties Possible solution?

Higgs Mechanism

Higgs potential Benefits

EW Phase

Weak (complex) doublet with 4 (real) degrees of freedom:

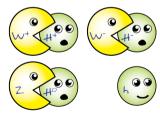
$$\Phi = \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}$$

With potential:

$$V(\Phi) = -\mu^2 \Phi^{\dagger} \Phi + \frac{\lambda}{2} (\Phi^{\dagger} \Phi)^2$$

With Minimum (vacuum):

$$vev = |\langle \Phi \rangle| = \sqrt{\frac{\mu^2}{\lambda}}$$


Where do the degrees of freedom go?

Higgs potential

EW Phase

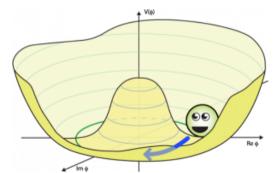
Benefits

- Higgs doublet has 4 real degrees of freedom
- One is the Higgs particle
- What about the other 3?
- They are absorbed by the gauge bosons to give them mass and third polarization

Higgs: Potential

Introduction

Gauge boson observations Theoretical difficulties Possible solution? Intermezzo


Higgs Mechanism

Higgs potential Benefits

EW Phase Transition

$$\Phi(x) = \begin{pmatrix} G^+(x) \\ v + H(x) + iG^0(x) \end{pmatrix}$$

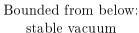
$$\mathcal{L} \supset |D_{\mu}\Phi|^2 + y\bar{\Psi}_L\Phi\psi_R = |\partial_{\mu}\Phi - igA_{\mu}\Phi|^2 + y\bar{\Psi}_L\Phi\psi_R$$

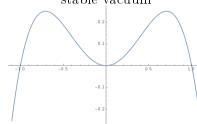
 $Source: \ http://www.quantumdiaries.org/2011/11/21/why-do-we-expect-a-higgs-boson-part-i-electroweak-symmetry-breaking/$

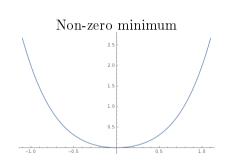
Constraints of Potential

Introduction

Gauge boson observations Theoretical difficulties Possible solution? Intermezzo


Higgs Mechanism


Higgs potential


Benefits

EW Phase Transition

$V(\Phi) = \Phi^2 + \Phi^4$

Perturbativity & Unitarity

Introduction

Gauge boso observations Theoretical difficulties Possible solution? Intermezzo

Higgs Mechanism Higgs potenti Benefits

EW Phase Transition

- Perturbativity & unitarity violated for gauge boson scattering This amplitude grows \sim Energy
- New diagrams with Higgs: has exactly the right behavior that sum of both give a finite result for all energies.

• Renormalizability!

EW Phase Transition: Temperature vs. Energy

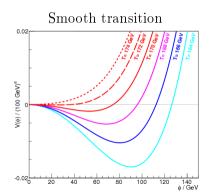
Introduction

Gauge bosor observations Theoretical difficulties Possible solution? Intermezzo

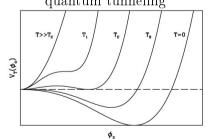
Higgs Mechanism Higgs potent Benefits

- Temperature is **not** just energy!
- Mental picture: plasma with temperature and number density "background"
- Large enough temperature: production and destruction processes give chemical potential
- Short free path of particle -> short free time
- →Adjust description (like path integral)
- →Effective terms in Lagrangian depending on temperature and number density

EW Phase Transition: Temperature dependence


Introduction

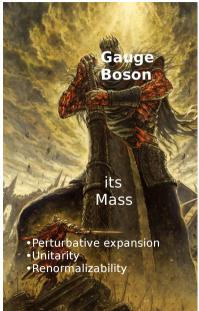
Gauge boson observations Theoretical difficulties Possible solution? Intermezzo


Higgs Mechanism Higgs potentis Benefits

EW Phase Transition • Temperature-dependent effective potential from plasma background

- Several phase transitions possible from hot \rightarrow less hot
- Consequences for big bang & baryosynthesis

Non-smooth: critical temperature & guantum tunneling



Conclusions

Introduction

Gauge boson observations Theoretical difficulties Possible solution? Intermezzo

Higgs Mechanism Higgs potentis Benefits

- Effective field theory doesn't work
- Higgs mechanism saves everything
- Group representations are a useful guide
- Spontaneous symmetry breaking
 - Lagrangian invariant under symmetry
 - Vacuum not invariant
 - Expand around vacuum
- Higgs potential restrictions
- Temperature \neq energy
- EW phase transition \rightarrow cosmology