Using Spin Chains for Three-Point Functions in $\mathcal{N}=4$ SYM

Christoph Dlapa

Outline

1 Motivation and Problem Statement

2 Preliminaries

3 Two-Point Functions

4 Three-Point Functions

5 Summary and Conclusions

Motivation for working on $\mathcal{N}=4$ supersymmetric Yang-Mills Theory

- $\mathcal{N}=4$ SYM is dual to type IIB string theory on $A d S_{5} \times S^{5}$
- Strong/weak duality
\Rightarrow Useful for computations
\Rightarrow Hard to test

Motivation for working on $\mathcal{N}=4$ supersymmetric Yang-Mills Theory

- $\mathcal{N}=4$ SYM is dual to type IIB string theory on $\operatorname{Ad} S_{5} \times S^{5}$
- Strong/weak duality
\Rightarrow Useful for computations
\Rightarrow Hard to test

■ Solvable CFTs typically two-dimensional

Motivation for working on $\mathcal{N}=4$ supersymmetric Yang-Mills Theory

- $\mathcal{N}=4 \mathrm{SYM}$ is dual to type IIB string theory on $A \mathrm{~d} S_{5} \times S^{5}$
- Strong/weak duality
\Rightarrow Useful for computations
\Rightarrow Hard to test

■ Solvable CFTs typically two-dimensional

■ Integrability in planar limit \rightarrow in principle exactly solvable

Motivation for working on Three-Point Functions

■ CFT has two basic ingredients:

- Two-Point Functions (Spectrum of scaling dimensions Δ_{A})

$$
\left\langle\mathcal{O}_{A}\left(x_{1}\right) \mathcal{O}_{B}\left(x_{2}\right)\right\rangle=\frac{\delta_{A B}}{\left|x_{12}\right|^{2 \Delta_{A}}},
$$

with $x_{12}^{\mu}=x_{1}^{\mu}-x_{2}^{\mu}$.
= Three-Point Functions (Structure constants, OPE Coefficients $C_{A B C}$)

where $\Delta_{A B}=\Delta_{A}+\Delta_{B}-\Delta_{C}$

Motivation for working on Three-Point Functions

■ CFT has two basic ingredients:

- Two-Point Functions (Spectrum of scaling dimensions Δ_{A})

$$
\left\langle\mathcal{O}_{A}\left(x_{1}\right) \mathcal{O}_{B}\left(x_{2}\right)\right\rangle=\frac{\delta_{A B}}{\left|x_{12}\right|^{2 \Delta_{A}}}
$$

with $x_{12}^{\mu}=x_{1}^{\mu}-x_{2}^{\mu}$.

- Three-Point Functions (Structure constants, OPE Coefficients $C_{A B C}$)

$$
\left\langle\mathcal{O}_{A}\left(x_{1}\right) \mathcal{O}_{B}\left(x_{2}\right) \mathcal{O}_{C}\left(x_{3}\right)\right\rangle=\frac{C_{A B C}}{\left|x_{12}\right|^{\Delta_{A B}}\left|x_{13}\right|^{\Delta_{A C}}\left|x_{23}\right|^{\Delta_{B C}}}
$$

where $\Delta_{A B}=\Delta_{A}+\Delta_{B}-\Delta_{C}$

Operator Product Expansion

General correlation functions can be computed through the Operator Product Expansion (OPE)

Correlation Functions in $\mathcal{N}=4$ SYM

■ Restrict to scalar fields $\phi_{m}, m=1, \ldots, 6$

■ R-symmetry: $S O(6)$ rotation of scalars

- Change of basis: $Z, X, Y, \bar{Z}, \bar{X}, \bar{Y}$

Correlation Functions in $\mathcal{N}=4$ SYM

- Restrict to scalar fields $\phi_{m}, m=1, \ldots, 6$

■ R-symmetry: $S O(6)$ rotation of scalars

■ Change of basis: $Z, X, Y, \bar{Z}, \bar{X}, \bar{Y}$

■ Gauge-invariant Operators are composed of multiple fields inside traces

$$
\mathcal{O}=\operatorname{Tr}(Z \bar{Z} X Y Z \ldots)
$$

Spectrum of $\mathcal{N}=4 \mathrm{SYM}$

- Minahan \& Zarembo (2002): Mapping of operators to eigenstates of the Heisenberg spin chain Hamiltonian

Spectrum of $\mathcal{N}=4 \mathrm{SYM}$

■ Minahan \& Zarembo (2002): Mapping of operators to eigenstates of the Heisenberg spin chain Hamiltonian

- E.g. in $S U(2)$ Sector: Only two types of fields $Z \cong \uparrow, X \cong \downarrow$

$$
\operatorname{Tr}(X Z Z Z \ldots) \rightarrow|p\rangle \equiv \sum_{n=1}^{L} e^{i p n}|\uparrow \ldots \uparrow \downarrow \uparrow \ldots \uparrow\rangle
$$

Spectrum of $\mathcal{N}=4 \mathrm{SYM}$

■ Minahan \& Zarembo (2002): Mapping of operators to eigenstates of the Heisenberg spin chain Hamiltonian

- E.g. in $S U(2)$ Sector: Only two types of fields $Z \cong \uparrow, X \cong \downarrow$

$$
\operatorname{Tr}(X Z Z Z \ldots) \rightarrow|p\rangle \equiv \sum_{n=1}^{L} e^{i p n}|\uparrow \ldots \stackrel{n}{\downarrow} \uparrow \ldots \uparrow\rangle
$$

- Operators determined by excitations

Spectrum of $\mathcal{N}=4$ SYM (advanced)

■ How to construct arbitrary operators in the spin chain framework?

Spectrum of $\mathcal{N}=4$ SYM (advanced)

■ How to construct arbitrary operators in the spin chain framework?

- Additional fields through spin chain nesting:

$$
Z, X, Y
$$

Spectrum of $\mathcal{N}=4$ SYM (advanced)

- How to construct arbitrary operators in the spin chain framework?
- Additional fields through spin chain nesting:

$$
Z, X, Y
$$

Spectrum of $\mathcal{N}=4$ SYM (advanced)

■ How to construct arbitrary operators in the spin chain framework?

- Additional fields through spin chain nesting:

$$
Z, X, Y
$$

Level II

Level I

Two-Point Functions in the Planar Limit

Two-Point Functions in the Planar Limit

$$
\begin{gathered}
\left\langle\mathcal{O}_{A}\left(x_{1}\right) \mathcal{O}_{B}\left(x_{2}\right)\right\rangle_{\text {tree }}=\left(\frac{\delta_{A B}}{\left|x_{12}\right|^{2}}\right)^{L}=\frac{\delta_{A B}}{\left|x_{12}\right|^{2 \Delta_{0}}} \sim\left\langle p_{1} \mid p_{2}\right\rangle \\
|p\rangle=\sum_{n=1}^{L} e^{i p n}|\uparrow \ldots \uparrow \uparrow \uparrow \ldots \uparrow\rangle
\end{gathered}
$$

Two-Point Functions in the Planar Limit

$$
\left\langle\mathcal{O}_{A}\left(x_{1}\right) \mathcal{O}_{B}\left(x_{2}\right)\right\rangle_{\text {tree }}=\left(\frac{\delta_{A B}}{\left|x_{12}\right|^{2}}\right)^{L}=\frac{\delta_{A B}}{\left|x_{12}\right|^{2 \Delta_{0}}} \sim\left\langle p_{1} \mid p_{2}\right\rangle
$$

- The planar or 't Hooft limit $N_{c} \rightarrow \infty$ only includes planar graphs of the $S U\left(N_{c}\right)$ gauge theory.

"Easy" Three-Point Functions

- 2002-2012: Spectral problem well understood

■ Solutions available through the Quantum Spectral Curve ${ }^{1}$ (QSC)

[^0]
"Easy" Three-Point Functions

- 2002-2012: Spectral problem well understood

■ Solutions available through the Quantum Spectral Curve ${ }^{1}$ (QSC)

- Next Step: Three-point functions

[^1]
"Easy" Three-Point Functions

- 2002-2012: Spectral problem well understood
- Solutions available through the Quantum Spectral Curve ${ }^{1}$ (QSC)
- Next Step: Three-point functions

■ "Heavy-Heavy-Light" ${ }^{2} C_{H H L} \sim\left\langle\mathcal{O}_{H}\left(x_{1}\right) \mathcal{O}_{L}\left(x_{2}\right) \mathcal{O}_{H}\left(x_{3}\right)\right\rangle$

- Strong coupling: Perturbed two-point function

[^2]
"Easy" Three-Point Functions

- 2002-2012: Spectral problem well understood
- Solutions available through the Quantum Spectral Curve ${ }^{1}$ (QSC)
- Next Step: Three-point functions

■ "Heavy-Heavy-Light" ${ }^{2} C_{H H L} \sim\left\langle\mathcal{O}_{H}\left(x_{1}\right) \mathcal{O}_{L}\left(x_{2}\right) \mathcal{O}_{H}\left(x_{3}\right)\right\rangle$

- Strong coupling: Perturbed two-point function
- Related to diagonal form factors ${ }^{3}$

$$
\left\langle p_{1}, \ldots, p_{N}\right| \hat{\mathcal{O}}_{L}\left|p_{1}, \ldots, p_{N}\right\rangle
$$

[^3]"Easy" Three-Point Function: The Lagrangian density

- Path-integral expression for the two-point function

$$
\left\langle\tilde{\mathcal{O}}_{A}\left(x_{1}\right) \tilde{\mathcal{O}}_{B}\left(x_{2}\right)\right\rangle=\int[\mathrm{D} W] e^{i \int \mathrm{~d}^{D} x_{0} \mathcal{L}[W]} \tilde{\mathcal{O}}\left(x_{1}\right) \tilde{\mathcal{O}}\left(x_{2}\right)
$$

[^4]
"Easy" Three-Point Function: The Lagrangian density

■ Path-integral expression for the two-point function

$$
\left\langle\tilde{\mathcal{O}}_{A}\left(x_{1}\right) \tilde{\mathcal{O}}_{B}\left(x_{2}\right)\right\rangle=\int[\mathrm{D} W] e^{i \int \mathrm{~d}^{D} x_{0} \mathcal{L}[W]} \tilde{\mathcal{O}}\left(x_{1}\right) \tilde{\mathcal{O}}\left(x_{2}\right)
$$

- Use Lagrangian insertion procedure ${ }^{4}$ for one-loop correlator

$$
-i \int \mathrm{~d}^{D} x_{0}\left\langle\mathcal{O}_{\mathrm{BPS}}\left(x_{1}\right) \mathcal{L}^{\prime}\left(x_{0}\right) \mathcal{O}_{\mathrm{BPS}}\left(x_{2}\right)\right\rangle_{\text {tree }}=g^{2} \frac{\partial}{\partial g^{2}}\left\langle\mathcal{O}_{\mathrm{BPS}}\left(x_{1}\right) \mathcal{O}_{\mathrm{BPS}}\left(x_{2}\right)\right\rangle_{\text {one-loop }}
$$

[^5]
"Easy" Three-Point Function: The Lagrangian density

- Path-integral expression for the two-point function

$$
\left\langle\tilde{\mathcal{O}}_{A}\left(x_{1}\right) \tilde{\mathcal{O}}_{B}\left(x_{2}\right)\right\rangle=\int[\mathrm{D} W] e^{i \int \mathrm{~d}^{D} x_{0} \mathcal{L}[W]} \tilde{\mathcal{O}}\left(x_{1}\right) \tilde{\mathcal{O}}\left(x_{2}\right)
$$

- Use Lagrangian insertion procedure ${ }^{4}$ for one-loop correlator

$$
-i \int \mathrm{~d}^{D} x_{0}\left\langle\mathcal{O}_{\mathrm{BPS}}\left(x_{1}\right) \mathcal{L}^{\prime}\left(x_{0}\right) \mathcal{O}_{\mathrm{BPS}}\left(x_{2}\right)\right\rangle_{\text {tree }}=g^{2} \frac{\partial}{\partial g^{2}}\left\langle\mathcal{O}_{\mathrm{BPS}}\left(x_{1}\right) \mathcal{O}_{\mathrm{BPS}}\left(x_{2}\right)\right\rangle_{\text {one-loop }}
$$

- Compare to ${ }^{5}$

$$
2 \pi^{2} C_{A \mathcal{L} A}=-g^{2} \frac{\partial \Delta_{A}}{\partial g^{2}}
$$

[^6]
The Hexagon Approach ${ }^{6}$

■ Currently most advanced method for three-point functions

- Non-perturbative, but a conjecture
" Corrections: $\sim \operatorname{Pol}(1 / L)$ but not $\sim e^{-L}$

[^7]
The Hexagon Approach ${ }^{6}$

■ Currently most advanced method for three-point functions

- Non-perturbative, but a conjecture
- Corrections: $\sim \operatorname{Pol}(1 / L)$ but not $\sim e^{-L}$

[^8]
The Hexagon Approach ${ }^{6}$

■ Currently most advanced method for three-point functions

- Non-perturbative, but a conjecture
- Corrections: $\sim \operatorname{Pol}(1 / L)$ but not $\sim e^{-L}$

[^9]
The Hexagon Approach ${ }^{6}$

- Currently most advanced method for three-point functions
- Non-perturbative, but a conjecture
- Corrections: $\sim \operatorname{Pol}(1 / L)$ but not $\sim e^{-L}$

[^10]
Example: Three non-BPS Operators

- Hexagon form factors can be restricted by symmetry to be: $\quad H=\langle\dot{\psi}| \mathcal{S}|\psi\rangle$

Example: Three non-BPS Operators

- Hexagon form factors can be restricted by symmetry to be: $\quad H=\langle\dot{\psi}| \mathcal{S}|\psi\rangle$

- Quantum Integrability:
- Infinitely many integrals of motion
\rightarrow Conservation of individual momenta
\rightarrow Factorized scattering

Result for general Operators

- Asymptotic three-point function for one excited operator:

$$
\left\langle\mathcal{O}_{1}^{\bullet}(\mathbf{p}) \mathcal{O}_{2}^{\circ} \mathcal{O}_{3}^{\circ}\right\rangle=\frac{C_{123}^{\bullet \circ}}{\left|x_{12}\right|^{\Delta_{A B}}\left|x_{13}\right|^{\Delta_{A C}}\left|x_{23}\right|^{\Delta_{B C}}},
$$

Result for general Operators

- Asymptotic three-point function for one excited operator:

$$
\left\langle\mathcal{O}_{1}^{\bullet}(\mathbf{p}) \mathcal{O}_{2}^{\circ} \mathcal{O}_{3}^{\circ}\right\rangle=\frac{C_{123}^{\bullet \bullet \circ}}{\left|x_{12}\right|^{\Delta_{A B}}\left|x_{13}\right|^{\Delta_{A C}}\left|x_{23}\right|^{\Delta_{B C}}},
$$

with

$$
\left(\frac{C_{123}^{\bullet \circ \circ}}{C_{123}^{\circ \circ ᄋ}}\right)^{2}=\frac{\left\langle\mathbf{p}^{\mathrm{II}, \ldots} \mid \mathbf{p}^{\mathrm{II}, \ldots}\right\rangle^{2} \prod_{k=1}^{K} \mu\left(p_{k}\right)}{\langle\mathbf{p} \mid \mathbf{p}\rangle \prod_{i<j} S\left(p_{i}, p_{j}\right)} \mathcal{A}^{2},
$$

where the sum over partitions onto the two hexagons is given by

$$
\mathcal{A}=\prod_{i<j} h\left(p_{i}, p_{j}\right) \sum_{\alpha \cup \bar{\alpha}=\mathbf{p}}(-1)^{|\bar{\alpha}|} \prod_{j \in \bar{\alpha}} f\left(p_{j}\right) e^{i p_{j} \ell_{21}} \prod_{i \in \alpha, j \in \bar{\alpha}} \frac{1}{h\left(p_{i}, p_{j}\right)} .
$$

- Translation to spin chain states not known in general

Results in Subsectors

- Volume dependence of Heavy-Heavy-Light three-point functions ${ }^{7}$
- Three-point functions in $S U(1 \mid 1)$ sector (fermions) ${ }^{8}$

[^11]
Results in Subsectors

- Volume dependence of Heavy-Heavy-Light three-point functions ${ }^{7}$
- Three-point functions in $S U(1 \mid 1)$ sector (fermions) ${ }^{8}$

■ Descendants: Calculation in $S O(6)$ sector reproduces results from Wick-contractions

$$
\begin{aligned}
\lim _{p_{1} \rightarrow 0} S\left(p_{1}, p_{2}\right)=1+\mathcal{O}\left(p_{1}\right) & \Rightarrow \quad \operatorname{Tr}(Y \bar{Y}-X \bar{X}) \\
& \Rightarrow \quad C_{123}^{\bullet \bullet \circ} \sim\left(1-e^{i \ell_{12} p_{2}}\right)\left(1-e^{i \ell_{23} p_{3}}\right)
\end{aligned}
$$

[^12]
Summary and Conclusions

- Integrability: Powerful tool to calculate correlation functions in $\mathcal{N}=4 \mathrm{SYM}$ in the planar limit

Summary and Conclusions

- Integrability: Powerful tool to calculate correlation functions in $\mathcal{N}=4 \mathrm{SYM}$ in the planar limit

■ Efficient computation of three-point functions through the Hexagon Approach

Summary and Conclusions

- Integrability: Powerful tool to calculate correlation functions in $\mathcal{N}=4 \mathrm{SYM}$ in the planar limit

■ Efficient computation of three-point functions through the Hexagon Approach

Level II

■ Difficult for higher rank sectors

Summary and Conclusions

- Integrability: Powerful tool to calculate correlation functions in $\mathcal{N}=4 \mathrm{SYM}$ in the planar limit

■ Efficient computation of three-point functions through the Hexagon Approach

Level II

■ Difficult for higher rank sectors
\Rightarrow Calculate three-point function known to all orders

$$
2 \pi^{2} C_{A \mathcal{L} A}=-g^{2} \frac{\partial \Delta_{A}}{\partial g^{2}}
$$

Backup Slides

Anomalous Dimension Matrix

- Loop corrections lead to divergencies
- Example of quartic vertex:

$$
\int \frac{\mathrm{d}^{4} x_{0}}{\left|x_{01}\right|^{4}\left|x_{02}\right|^{4}}=\frac{2 \pi^{2} i}{\left|x_{12}\right|^{4}} \log \left|\Lambda x_{12}\right|^{2}
$$

- Renormalise with

$$
\begin{aligned}
& \tilde{\mathcal{O}}_{A}= Z_{A}{ }^{B} \mathcal{O}_{B}, \quad Z_{A}{ }^{B}=1+\frac{1}{2} \underbrace{\Gamma_{A}^{B}}_{\gamma_{A}} \log |\Lambda / \mu|^{2} \\
& \quad\left\langle\tilde{\mathcal{O}}_{A}\left(x_{1}\right) \tilde{\mathcal{O}}_{B}\left(x_{2}\right)\right\rangle_{\text {one-loop }}=\frac{\delta_{A B}}{\left|x_{12}\right|^{2 L}}\left(1-\gamma_{A} \log \left|\mu x_{12}\right|^{2}\right) \approx \frac{\left.\delta_{A B}\right)}{\left|x_{12}\right|^{2 L}\left|\mu x_{12}\right|^{2 \gamma_{A}}}
\end{aligned}
$$

- Scaling Dimension: $\Delta=\Delta_{0}+\gamma=L+\gamma$

Diagonalising Γ

Minahan \& Zarembo (2002):

- Heisenberg spin chain Hamiltonian $(S U(2)$ sector $)$

$$
\Gamma=H \sim \sum_{l=1}^{L}\left(I_{l, l+1}-P_{l, l+1}\right), \quad L+1 \equiv 1
$$

Diagonalising Γ in higher rank sectors

- Change notation to $Z \cong \theta, X \cong \stackrel{u\left(p_{1}\right)}{\theta}$

■ Roots (or rapidities) $u_{k} \equiv u\left(p_{k}\right)$ instead of momenta p_{k}

- e.g. two-magnon state reads

$$
\left|p_{1}<p_{2}\right\rangle \equiv \sum_{n_{1}<n_{2}} e^{i p_{1} n_{1}+i p_{2} n_{2}}\left|\theta_{1} \ldots \stackrel{\theta_{n_{1}}}{u_{1}} \ldots{\stackrel{u}{n_{2}}}_{u_{2}}^{\ldots} \theta_{L}\right\rangle
$$

■ Nested Ansatz: For $S U(3)$ put additional set of roots $\{w\}$ on top of roots $\{u\}$

- Fields: $Z \cong \theta, X \cong \begin{gathered}u_{1} \\ \theta\end{gathered}, Y \cong \begin{gathered}w_{1} \\ u_{1} \\ \theta\end{gathered}$
- Results in sum over states like

$$
\left|u_{1} \ldots \stackrel{u_{k_{1}}}{w_{1}} \ldots \stackrel{u_{k_{2}}^{w_{2}}}{u_{k_{2}}} \ldots u_{M}\right\rangle \rightarrow \mid \theta_{1} \ldots \theta_{n_{1}}^{u_{1}} \ldots \theta_{n_{k_{1}}}^{\left.\left.\stackrel{w_{k_{1}}}{u_{1}} \ldots \theta_{n_{n_{k_{2}}}^{u_{k_{2}}}}^{w_{2}} \ldots \theta_{n_{M}}^{u_{M}} \ldots \theta_{L}\right\rangle\right) \mid}
$$

Higher Rank Sectors

- Nested Ansatz: For $S U(3)$ put additional set of roots $\{w\}$ on top of roots $\{u\}$

- All six scalar fields: $S O(6) \cong S U(4)$

Work in progress: The Lagrangian

■ Lagrangian density is descendant of the full $\operatorname{PSU}(2,2 \mid 4)$ symmetry

- Need to understand how to construct the Lagrangian in the spin chain framework

■ Limits are highly ambiguous: Different orders give different results

Goal

- Calculate $\left\langle\mathcal{O}_{A}\left(x_{1}\right) \mathcal{L}\left(x_{2}\right) \mathcal{O}_{A}\left(x_{3}\right)\right\rangle$

■ Lagrangian density is a supersymmetry descendant \rightarrow less understood

$$
\mathcal{L} \sim Q^{4} \operatorname{Tr}(\phi \phi)
$$

- Lagrangian insertion procedure ${ }^{9}$ used to calculate correlators and amplitudes
- Currently most advanced method for Structure Constants: Hexagon Approach ${ }^{5}$
- Non-perturbative, but a conjecture
- Corrections: $\sim \operatorname{Pol}(1 / L)$ but not $\sim e^{-L}$
- $C_{A A \mathcal{L}}$ known exactly ${ }^{6}$:

$$
2 \pi^{2} C_{A A \mathcal{L}}=-g^{2} \frac{\partial \gamma_{A}}{\partial g^{2}} \quad \text { with } \quad \gamma=\Delta-\Delta_{0}
$$

[^13]
Limit to Descendant State

- Scattering becomes trivial: $\lim _{p_{1} \rightarrow 0} S\left(p_{1}, p_{2}\right)=1+\mathcal{O}\left(p_{1}\right)$

- $S O(6)$ calculation reproduces expected result ${ }^{7}$

[^14]
Three-point functions and Structure Constants

■ Coefficient appearing in the three-point function

$$
\left\langle\mathcal{O}_{A}\left(x_{1}\right) \mathcal{O}_{B}\left(x_{2}\right) \mathcal{O}_{C}\left(x_{3}\right)\right\rangle=\frac{C_{A B C}}{\left|x_{12}\right|^{\Delta_{A B}\left|x_{13}\right|^{\Delta_{A C}}\left|x_{23}\right|^{\Delta_{B C}}},}
$$

where $\Delta_{A B}=\Delta_{A}+\Delta_{B}-\Delta_{C}$

- Special structure constant known to all orders ${ }^{8}$:

$$
2 \pi^{2} C_{A A \mathcal{L}}=-g^{2} \frac{\partial \gamma_{A}}{\partial g^{2}}
$$

- Goal: Understand this relation in the integrability setup
- At one-loop

$$
-2 \pi^{2} C_{A A \mathcal{L}}^{\text {(one-loop) }}=-2 \pi^{2}\left\langle\mathcal{O}_{A}\right| \hat{\mathcal{L}}\left|\mathcal{O}_{A}\right\rangle=\left\langle\mathcal{O}_{A}\right| H\left|\mathcal{O}_{A}\right\rangle=\gamma_{A}^{\text {(tree) }}
$$

[^15]Bajnok, Zoltan, Romuald A. Janik, and Andrzej Wereszczyński (2014). "HHL correlators, orbit averaging and form factors". In: JHEP 09, p. 050. DOI: 10.1007/JHEP09 (2014)050. arXiv: 1404.4556 [hep-th].

Basso, Benjamin, Shota Komatsu, and Pedro Vieira (2015). "Structure Constants and Integrable Bootstrap in Planar $\mathcal{N}=4$ SYM Theory". In: arXiv: 1505.06745 [hep-th]. Basso, Benjamin et al. (2017). "Asymptotic Four Point Functions". In: arXiv: 1701.04462 [hep-th].
Caetano, Joao and Thiago Fleury (2016). "Fermionic Correlators from Integrability". In: JHEP 09, p. 010. DOI: 10.1007/JHEP09 (2016)010. arXiv: 1607.02542 [hep-th].
Costa, Miguel S. et al. (2010). "On three-point correlation functions in the gauge/gravity duality". In: JHEP 11, p. 141. DOI: 10.1007/JHEP11(2010)141. arXiv: 1008.1070.
Eden, Burkhard, Gregory P. Korchemsky, and Emery Sokatchev (2011). "From correlation functions to scattering amplitudes". In: JHEP 12, p. 002. DOI: 10.1007/JHEP12(2011)002. arXiv: 1007.3246 [hep-th].

Gromov, Nikolay et al. (2014). "Quantum Spectral Curve for Planar $\mathcal{N}=4$
Super-Yang-Mills Theory". In: Phys. Rev. Lett. 112.1, p. 011602. Doi: 10.1103/PhysRevLett.112.011602. arXiv: 1305.1939 [hep-th].

Jiang. Yunfeng (2017). "Diagonal Form Factors and Hexagon Form Factors II. Non-BPS

[^0]: ${ }^{1}$ Gromov et al. 2014

[^1]: ${ }^{1}$ Gromov et al. 2014

[^2]: ${ }^{1}$ Gromov et al. 2014, ${ }^{2}$ Zarembo 2010

[^3]: ${ }^{1}$ Gromov et al. 2014, ${ }^{2}$ Zarembo 2010, ${ }^{3}$ Bajnok, Janik, and Wereszczyński 2014

[^4]: ${ }^{4}$ Eden, Korchemsky, and Sokatchev 2011

[^5]: ${ }^{4}$ Eden, Korchemsky, and Sokatchev 2011

[^6]: ${ }^{4}$ Eden, Korchemsky, and Sokatchev 2011, ${ }^{5}$ Costa et al. 2010

[^7]: ${ }^{6}$ Basso, Komatsu, and Vieira 2015.

[^8]: ${ }^{6}$ Basso, Komatsu, and Vieira 2015.

[^9]: ${ }^{6}$ Basso, Komatsu, and Vieira 2015.

[^10]: ${ }^{6}$ Basso, Komatsu, and Vieira 2015.

[^11]: ${ }^{7}$ Jiang 2017, ${ }^{8}$ Caetano and Fleury 2016 Christoph Dlapa

[^12]: ${ }^{7}$ Jiang 2017, ${ }^{8}$ Caetano and Fleury 2016

[^13]: ${ }^{9}$ Eden, Korchemsky, and Sokatchev 2011, ${ }^{5}$ Basso, Komatsu, and Vieira 2015, ${ }^{6}$ Costa et al. 2010

[^14]: ${ }^{7}$ Basso et al. 2017.

[^15]: ${ }^{8}$ Costa et al. 2010.

