Using Spin Chains for Three-Point Functions in $\mathcal{N} = 4$ SYM

Christoph Dlapa

October 18, 2018

1 Motivation and Problem Statement

- **2** Preliminaries
- **3** Two-Point Functions
- **4** Three-Point Functions
- **5** Summary and Conclusions

Motivation for working on $\mathcal{N} = 4$ supersymmetric Yang-Mills Theory

- $\mathcal{N} = 4$ SYM is dual to type IIB string theory on $AdS_5 \times S^5$
 - Strong/weak duality
 - \Rightarrow Useful for computations
 - \Rightarrow Hard to test

Motivation for working on $\mathcal{N} = 4$ supersymmetric Yang-Mills Theory

- $\mathcal{N} = 4$ SYM is dual to type IIB string theory on $AdS_5 \times S^5$
 - Strong/weak duality
 - \Rightarrow Useful for computations
 - \Rightarrow Hard to test
- Solvable CFTs typically two-dimensional

Motivation for working on $\mathcal{N} = 4$ supersymmetric Yang-Mills Theory

- $\mathcal{N} = 4$ SYM is dual to type IIB string theory on $AdS_5 \times S^5$
 - Strong/weak duality
 - \Rightarrow Useful for computations
 - \Rightarrow Hard to test
- Solvable CFTs typically two-dimensional
- \blacksquare Integrability in planar limit \rightarrow in principle exactly solvable

Motivation for working on Three-Point Functions

• CFT has two basic ingredients:

• Two-Point Functions (Spectrum of scaling dimensions Δ_A)

$$\langle \mathcal{O}_A(x_1)\mathcal{O}_B(x_2)\rangle = \frac{\delta_{AB}}{|x_{12}|^{2\Delta_A}},$$

with $x_{12}^{\mu} = x_1^{\mu} - x_2^{\mu}$.

• Three-Point Functions (Structure constants, OPE Coefficients C_{ABC})

$$\langle \mathcal{O}_A(x_1)\mathcal{O}_B(x_2)\mathcal{O}_C(x_3)\rangle = \frac{C_{ABC}}{|x_{12}|^{\Delta_{AB}}|x_{13}|^{\Delta_{AC}}|x_{23}|^{\Delta_{BC}}},$$

re $\Delta_{AB} = \Delta_A + \Delta_B - \Delta_C$

Motivation for working on Three-Point Functions

• CFT has two basic ingredients:

• Two-Point Functions (Spectrum of scaling dimensions Δ_A)

$$\langle \mathcal{O}_A(x_1)\mathcal{O}_B(x_2)\rangle = \frac{\delta_{AB}}{|x_{12}|^{2\Delta_A}},$$

with $x_{12}^{\mu} = x_1^{\mu} - x_2^{\mu}$.

• Three-Point Functions (Structure constants, OPE Coefficients C_{ABC})

$$\langle \mathcal{O}_A(x_1)\mathcal{O}_B(x_2)\mathcal{O}_C(x_3)\rangle = \frac{C_{ABC}}{|x_{12}|^{\Delta_{AB}}|x_{13}|^{\Delta_{AC}}|x_{23}|^{\Delta_{BC}}},$$

where $\Delta_{AB} = \Delta_A + \Delta_B - \Delta_C$

Operator Product Expansion

General correlation functions can be computed through the Operator Product Expansion (OPE)

Christoph Dlapa

Correlation Functions in $\mathcal{N} = 4$ SYM

- Restrict to scalar fields ϕ_m , $m = 1, \ldots, 6$
- **R**-symmetry: SO(6) rotation of scalars
- \blacksquare Change of basis: $Z,X,Y,\bar{Z},\bar{X},\bar{Y}$

Correlation Functions in $\mathcal{N} = 4$ SYM

- Restrict to scalar fields ϕ_m , $m = 1, \ldots, 6$
- **R**-symmetry: SO(6) rotation of scalars
- Change of basis: $Z, X, Y, \overline{Z}, \overline{X}, \overline{Y}$
- Gauge-invariant Operators are composed of multiple fields inside traces

$$\mathcal{O} = \mathrm{Tr}\left(Z\bar{Z}XYZ\ldots\right)$$

Christoph Dlapa

Spectrum of $\mathcal{N} = 4$ SYM

 Minahan & Zarembo (2002): Mapping of operators to eigenstates of the Heisenberg spin chain Hamiltonian

Spectrum of $\mathcal{N} = 4$ SYM

 Minahan & Zarembo (2002): Mapping of operators to eigenstates of the Heisenberg spin chain Hamiltonian

• E.g. in SU(2) Sector: Only two types of fields $Z \cong \uparrow$, $X \cong \downarrow$

Spectrum of $\mathcal{N} = 4$ SYM

 Minahan & Zarembo (2002): Mapping of operators to eigenstates of the Heisenberg spin chain Hamiltonian

• E.g. in SU(2) Sector: Only two types of fields $Z \cong \uparrow$, $X \cong \downarrow$

• Operators determined by excitations

• How to construct arbitrary operators in the spin chain framework?

• How to construct arbitrary operators in the spin chain framework?

• Additional fields through spin chain nesting:

Z, X, Y

• How to construct arbitrary operators in the spin chain framework?

• Additional fields through spin chain nesting:

Z, X, Y

Spectrum of $\mathcal{N} = 4$ SYM (advanced)

• How to construct arbitrary operators in the spin chain framework?

• Additional fields through spin chain nesting:

Z, X, Y

Christoph Dlapa

Christoph Dlapa

Spin Chains for Three-Point Functions in $\mathcal{N} = 4$ SYM

October 18, 2018 9 / 16

Christoph Dlapa

$$\langle \mathcal{O}_A(x_1)\mathcal{O}_B(x_2)\rangle_{\text{tree}} = \left(\frac{\delta_{AB}}{|x_{12}|^2}\right)^L = \frac{\delta_{AB}}{|x_{12}|^{2\Delta_0}} \sim \langle p_1|p_2\rangle$$

• The planar or 't Hooft limit $N_c \to \infty$ only includes planar graphs of the $SU(N_c)$ gauge theory.

Christoph Dlapa

- 2002-2012: Spectral problem well understood
- Solutions available through the Quantum Spectral Curve¹ (QSC)

Christoph Dlapa

 $^{^{1}}$ Gromov et al. 2014

- 2002-2012: Spectral problem well understood
- Solutions available through the Quantum Spectral Curve¹ (QSC)
- Next Step: Three-point functions

Christoph Dlapa

¹Gromov et al. 2014

- 2002-2012: Spectral problem well understood
- Solutions available through the Quantum Spectral Curve¹ (QSC)
- Next Step: Three-point functions
- "Heavy-Heavy-Light"² $C_{HHL} \sim \langle \mathcal{O}_H(x_1) \mathcal{O}_L(x_2) \mathcal{O}_H(x_3) \rangle$
- Strong coupling: Perturbed two-point function

¹Gromov et al. 2014, ²Zarembo 2010

Christoph Dlapa

- 2002-2012: Spectral problem well understood
- Solutions available through the Quantum Spectral Curve¹ (QSC)
- Next Step: Three-point functions
- "Heavy-Heavy-Light"² $C_{HHL} \sim \langle \mathcal{O}_H(x_1)\mathcal{O}_L(x_2)\mathcal{O}_H(x_3) \rangle$
- Strong coupling: Perturbed two-point function
- Related to diagonal form factors³

 $\langle p_1,\ldots,p_N | \hat{\mathcal{O}}_L | p_1,\ldots,p_N \rangle$

¹Gromov et al. 2014, ²Zarembo 2010, ³Bajnok, Janik, and Wereszczyński 2014 Christoph Dlapa Spin Chains for Three-Point Functions in $\mathcal{N} = 4$ SYM

"Easy" Three-Point Function: The Lagrangian density

Path-integral expression for the two-point function

$$\left\langle \tilde{\mathcal{O}}_A(x_1)\tilde{\mathcal{O}}_B(x_2) \right\rangle = \int [\mathrm{D}W] e^{i\int \mathrm{d}^D x_0 \mathcal{L}[W]} \tilde{\mathcal{O}}(x_1)\tilde{\mathcal{O}}(x_2)$$

Christoph Dlapa

⁴Eden, Korchemsky, and Sokatchev 2011

"Easy" Three-Point Function: The Lagrangian density

Path-integral expression for the two-point function

$$\left\langle \tilde{\mathcal{O}}_A(x_1)\tilde{\mathcal{O}}_B(x_2) \right\rangle = \int [\mathrm{D}W] e^{i\int \mathrm{d}^D x_0 \mathcal{L}[W]} \tilde{\mathcal{O}}(x_1)\tilde{\mathcal{O}}(x_2)$$

■ Use Lagrangian insertion procedure⁴ for one-loop correlator

$$-i\int \mathrm{d}^{D}x_{0}\left\langle \mathcal{O}_{\mathrm{BPS}}(x_{1})\mathcal{L}'(x_{0})\mathcal{O}_{\mathrm{BPS}}(x_{2})\right\rangle_{\mathrm{tree}} = g^{2}\frac{\partial}{\partial g^{2}}\left\langle \mathcal{O}_{\mathrm{BPS}}(x_{1})\mathcal{O}_{\mathrm{BPS}}(x_{2})\right\rangle_{\mathrm{one-loop}}$$

Christoph Dlapa

⁴Eden, Korchemsky, and Sokatchev 2011

"Easy" Three-Point Function: The Lagrangian density

Path-integral expression for the two-point function

$$\left\langle \tilde{\mathcal{O}}_A(x_1)\tilde{\mathcal{O}}_B(x_2) \right\rangle = \int [\mathrm{D}W] e^{i\int \mathrm{d}^D x_0 \mathcal{L}[W]} \tilde{\mathcal{O}}(x_1)\tilde{\mathcal{O}}(x_2)$$

■ Use Lagrangian insertion procedure⁴ for one-loop correlator

$$-i\int \mathrm{d}^{D}x_{0}\left\langle \mathcal{O}_{\mathrm{BPS}}(x_{1})\mathcal{L}'(x_{0})\mathcal{O}_{\mathrm{BPS}}(x_{2})\right\rangle_{\mathrm{tree}} = g^{2}\frac{\partial}{\partial g^{2}}\left\langle \mathcal{O}_{\mathrm{BPS}}(x_{1})\mathcal{O}_{\mathrm{BPS}}(x_{2})\right\rangle_{\mathrm{one-loop}}$$

■ Compare to⁵

$$2\pi^2 C_{A\mathcal{L}A} = -g^2 \frac{\partial \Delta_A}{\partial g^2}$$

⁴Eden, Korchemsky, and Sokatchev 2011, ⁵Costa et al. 2010

Christoph Dlapa

- Currently most advanced method for three-point functions
 - Non-perturbative, but a conjecture
 - Corrections: $\sim \text{Pol}(1/L)$ but not $\sim e^{-L}$

⁶Basso, Komatsu, and Vieira 2015.

• Currently most advanced method for three-point functions

- Non-perturbative, but a conjecture
- Corrections: ~ $\operatorname{Pol}(1/L)$ but not ~ e^{-L}

Christoph Dlapa

⁶Basso, Komatsu, and Vieira 2015.

• Currently most advanced method for three-point functions

- Non-perturbative, but a conjecture
- Corrections: ~ $\operatorname{Pol}(1/L)$ but not ~ e^{-L}

Christoph Dlapa

⁶Basso, Komatsu, and Vieira 2015.

• Currently most advanced method for three-point functions

- Non-perturbative, but a conjecture
- Corrections: $\sim \operatorname{Pol}(1/L)$ but not $\sim e^{-L}$

Christoph Dlapa

⁶Basso, Komatsu, and Vieira 2015.

Example: Three non-BPS Operators

• Hexagon form factors can be restricted by symmetry to be: $H = \langle \dot{\psi} | \mathcal{S} | \psi \rangle$

Example: Three non-BPS Operators

• Hexagon form factors can be restricted by symmetry to be: $H = \langle \dot{\psi} | \mathcal{S} | \psi \rangle$

- Quantum Integrability:
 - Infinitely many integrals of motion
 - $\rightarrow~{\rm Conservation}$ of individual momenta
 - $\rightarrow~$ Factorized scattering

Result for general Operators

• Asymptotic three-point function for one excited operator:

$$\langle \mathcal{O}_1^{\bullet}(\mathbf{p})\mathcal{O}_2^{\circ}\mathcal{O}_3^{\circ}\rangle = \frac{C_{123}^{\bullet\circ\circ}}{|x_{12}|^{\Delta_{AB}}|x_{13}|^{\Delta_{AC}}|x_{23}|^{\Delta_{BC}}},$$

Result for general Operators

• Asymptotic three-point function for one excited operator:

$$\langle \mathcal{O}_1^{\bullet}(\mathbf{p}) \mathcal{O}_2^{\circ} \mathcal{O}_3^{\circ} \rangle = \frac{C_{123}^{\bullet \circ \circ}}{|x_{12}|^{\Delta_{AB}} |x_{13}|^{\Delta_{AC}} |x_{23}|^{\Delta_{BC}}},$$

with

$$\left(\frac{C_{123}^{\bullet\circ\circ}}{C_{123}^{\circ\circ\circ}}\right)^2 = \frac{\left\langle \mathbf{p}^{\mathrm{II},\dots} | \mathbf{p}^{\mathrm{II},\dots} \right\rangle^2 \prod_{k=1}^{K} \mu(p_k)}{\left\langle \mathbf{p} | \mathbf{p} \right\rangle \prod_{i < j} S(p_i, p_j)} \mathcal{A}^2,$$

where the sum over partitions onto the two hexagons is given by

$$\mathcal{A} = \prod_{i < j} h(p_i, p_j) \sum_{\alpha \cup \bar{\alpha} = \mathbf{p}} (-1)^{|\bar{\alpha}|} \prod_{j \in \bar{\alpha}} f(p_j) e^{ip_j \ell_{21}} \prod_{i \in \alpha, j \in \bar{\alpha}} \frac{1}{h(p_i, p_j)}.$$

• Translation to spin chain states not known in general

Christoph Dlapa

Results in Subsectors

- Volume dependence of Heavy-Heavy-Light three-point functions⁷
- Three-point functions in SU(1|1) sector (fermions)⁸

Christoph Dlapa

⁷Jiang 2017, ⁸Caetano and Fleury 2016

Results in Subsectors

- Volume dependence of Heavy-Heavy-Light three-point functions⁷
- Three-point functions in SU(1|1) sector (fermions)⁸
- \blacksquare Descendants: Calculation in SO(6) sector reproduces results from Wick-contractions

⁷Jiang 2017, ⁸Caetano and Fleury 2016

Christoph Dlapa

• Integrability: Powerful tool to calculate correlation functions in $\mathcal{N} = 4$ SYM in the planar limit

- Integrability: Powerful tool to calculate correlation functions in $\mathcal{N} = 4$ SYM in the planar limit
- Efficient computation of three-point functions through the Hexagon Approach

Christoph Dlapa

• Integrability: Powerful tool to calculate correlation functions in $\mathcal{N} = 4$ SYM in the planar limit

- Efficient computation of three-point functions through the Hexagon Approach
- Difficult for higher rank sectors

• Integrability: Powerful tool to calculate correlation functions in $\mathcal{N} = 4$ SYM in the planar limit

- Efficient computation of three-point functions through the Hexagon Approach
- Difficult for higher rank sectors
 - \Rightarrow Calculate three-point function known to all orders

$$2\pi^2 C_{A\mathcal{L}A} = -g^2 \frac{\partial \Delta_A}{\partial g^2}$$

Backup Slides

Christoph Dlapa

Spin Chains for Three-Point Functions in $\mathcal{N} = 4$ SYM

October 18, 2018 17 / 16

Anomalous Dimension Matrix

Loop corrections lead to divergenciesExample of quartic vertex:

$$\int \frac{\mathrm{d}^4 x_0}{|x_{01}|^4 |x_{02}|^4} = \frac{2\pi^2 i}{|x_{12}|^4} \log |\Lambda x_{12}|^2$$

Renormalise with

• Scaling Dimension: $\Delta = \Delta_0 + \gamma = L + \gamma$

Christoph Dlapa

 $\int \mathrm{d}^4 x_0 \, g^2 \mathcal{L}_4(x_0)$

 $\mathcal{O}(x_1)$

Diagonalising Γ

Minahan & Zarembo (2002):

• Heisenberg spin chain Hamiltonian (SU(2) sector)

$$\Gamma = H \sim \sum_{l=1}^{L} (I_{l,l+1} - P_{l,l+1}), \qquad L+1 \equiv 1$$

Christoph Dlapa

Diagonalising Γ in higher rank sectors

• Change notation to $Z \cong \theta$, $X \cong \overset{u(p_1)}{\theta}$

• Roots (or rapidities) $u_k \equiv u(p_k)$ instead of momenta p_k

• e.g. two-magnon state reads

$$|p_1 < p_2\rangle \equiv \sum_{n_1 < n_2} e^{ip_1n_1 + ip_2n_2} |\theta_1 \dots \theta_{n_1}^{u_1} \dots \theta_{n_2}^{u_2} \dots \theta_L\rangle$$

• Nested Ansatz: For SU(3) put additional set of roots $\{w\}$ on top of roots $\{u\}$

Christoph Dlapa

Higher Rank Sectors

• Nested Ansatz: For SU(3) put additional set of roots $\{w\}$ on top of roots $\{u\}$

• Fields:
$$Z \cong \theta, \ X \cong \overset{u_1}{\theta}, \ Y \cong \overset{w_1}{\theta}$$

• All six scalar fields: $SO(6) \cong SU(4)$

•
$$Z \cong \theta$$
, $X \cong \overset{u}{\theta}$, $Y \cong \overset{u}{\theta}$, $\bar{Y} \cong \overset{u}{\theta}$, $\bar{X} \cong \overset{u}{\theta}$, $\bar{Z} \cong \overset{u}{\theta}$

Spin Chains for Three-Point Functions in $\mathcal{N} = 4$ SYM

 $\{u\}_{\theta} \quad \{w\}$

 $|\psi\rangle$

 $|\Psi
angle$

• Lagrangian density is descendant of the full PSU(2,2|4) symmetry

- Need to understand how to construct the Lagrangian in the spin chain framework
- Limits are highly ambiguous: Different orders give different results

Goal

- Calculate $\langle \mathcal{O}_A(x_1)\mathcal{L}(x_2)\mathcal{O}_A(x_3)\rangle$
- \blacksquare Lagrangian density is a supersymmetry descendant \rightarrow less understood

$$\mathcal{L} \sim Q^4 \operatorname{Tr}(\phi \phi)$$

Lagrangian insertion procedure⁹ used to calculate correlators and amplitudes

• Currently most advanced method for Structure Constants: Hexagon Approach⁵

- Non-perturbative, but a conjecture
- Corrections: $\sim \operatorname{Pol}(1/L)$ but not $\sim e^{-L}$
- $C_{AA\mathcal{L}}$ known exactly⁶:

$$2\pi^2 C_{AA\mathcal{L}} = -g^2 \frac{\partial \gamma_A}{\partial g^2}$$
 with $\gamma = \Delta - \Delta_0$

⁹Eden, Korchemsky, and Sokatchev 2011, ⁵Basso, Komatsu, and Vieira 2015, ⁶Costa et al. 2010 Christoph Dlapa Spin Chains for Three-Point Functions in $\mathcal{N} = 4$ SYM October 18, 2018 23 / 16

Limit to Descendant State

• SO(6) calculation reproduces expected result⁷

Christoph Dlapa

 $^{^{7}}$ Basso et al. 2017.

Three-point functions and Structure Constants

• Coefficient appearing in the three-point function

$$\langle \mathcal{O}_A(x_1)\mathcal{O}_B(x_2)\mathcal{O}_C(x_3)\rangle = \frac{C_{ABC}}{|x_{12}|^{\Delta_{AB}}|x_{13}|^{\Delta_{AC}}|x_{23}|^{\Delta_{BC}}},$$

where $\Delta_{AB} = \Delta_A + \Delta_B - \Delta_C$

• Special structure constant known to all orders⁸:

$$2\pi^2 C_{AA\mathcal{L}} = -g^2 \frac{\partial \gamma_A}{\partial g^2}$$

• Goal: Understand this relation in the integrability setup

At one-loop

$$-2\pi^{2}C_{AA\mathcal{L}}^{(\text{one-loop})} = -2\pi^{2} \langle \mathcal{O}_{A} | \hat{\mathcal{L}} | \mathcal{O}_{A} \rangle = \langle \mathcal{O}_{A} | H | \mathcal{O}_{A} \rangle = \gamma_{A}^{(\text{tree})}$$

 8 Costa et al. 2010.

Christoph Dlapa

- Bajnok, Zoltan, Romuald A. Janik, and Andrzej Wereszczyński (2014). "HHL correlators, orbit averaging and form factors". In: *JHEP* 09, p. 050. DOI: 10.1007/JHEP09(2014)050. arXiv: 1404.4556 [hep-th].
- Basso, Benjamin, Shota Komatsu, and Pedro Vieira (2015). "Structure Constants and Integrable Bootstrap in Planar $\mathcal{N} = 4$ SYM Theory". In: arXiv: 1505.06745 [hep-th].
- Basso, Benjamin et al. (2017). "Asymptotic Four Point Functions". In: arXiv: 1701.04462 [hep-th].
- Caetano, Joao and Thiago Fleury (2016). "Fermionic Correlators from Integrability". In: JHEP 09, p. 010. DOI: 10.1007/JHEP09(2016)010. arXiv: 1607.02542 [hep-th].
- Costa, Miguel S. et al. (2010). "On three-point correlation functions in the gauge/gravity duality". In: *JHEP* 11, p. 141. DOI: 10.1007/JHEP11(2010)141. arXiv: 1008.1070.
- Eden, Burkhard, Gregory P. Korchemsky, and Emery Sokatchev (2011). "From correlation functions to scattering amplitudes". In: *JHEP* 12, p. 002. DOI:

10.1007/JHEP12(2011)002. arXiv: 1007.3246 [hep-th].

Gromov, Nikolay et al. (2014). "Quantum Spectral Curve for Planar $\mathcal{N} = 4$ Super-Yang-Mills Theory". In: *Phys. Rev. Lett.* 112.1, p. 011602. DOI: 10.1103 (Phys. Rev. Lett. 112.0, p. 011602, pr. 1205, 1020). [hep-th]

10.1103/PhysRevLett.112.011602. arXiv: 1305.1939 [hep-th].

Jiang, Yunfeng (2017). "Diagonal Form Factors and Hexagon Form Factors II. Non-BPS Spin Chains for Three-Point Functions in $\mathcal{N} = 4$ SYM October 18, 2018 26 / 16