<u>Tests of the Standard Model</u> of electroweak interactions

- Standard Model and motivations
- W, Z production cross sections
- W mass
- W width
- triple-gauge couplings

The "Standard Model" of Particle Physics

... is rather simple (und "übersichtlich"):

Elementary Particles			es	Eleme		
	Generation			exchange boson	relative strength	
Quarka	u	с	t	Strong	g	1
Quarks	d	S	b	elmagn.	γ	1/137
_	ν _e	v_{u}	$\nu_{ au}$	Weak	W^{\pm}, Z^0	10-14
Leptons	e	μ	τ	Gravitation	G	10-40

... as well as anti-particles

... describes the unified electro-weak interaction and the Strong force with gauge invariant quantum field theories;

... is extremely successful in consistently and precisely describing all particle reactions observed to date

... provides a consistent (yet incomplete) picture of the evolution of the very early universe -> particle cosmology

The elektroweak standard model at hadron colliders

- based on the gauge group SU(2)xU(1)
- with gauge bosons Z^0, W^+, W^- (SU(2)) and γ (U(1))
- left-handed fermion fields transforming as doublets under SU(2) ; there are 3 fermion families
- a complex scalar Higgs doublet, φ = (φ+, φ−), is added for mass generation through sponateous symmetry breaking, with one neutral Higgs scalar H as physical particle
- e.w. SM describes, in lowest order perturbation theory ("Born Approximation"), processes like $f_1f_2 \rightarrow f_3f_4$ with only 3 free parameters: α , G_F und $\sin^2\theta_w$.

Tests of the elektrow<u>eak</u> standard model at hadron colliders

- mainly physics with
 - el.-w. gauge bosons (W, Z, γ)
 - with top-quarks -> V8
 - with hadron jets (QCD) -> V7
- measurements of:
 - production cross sections
 - masses
 - decay rates / widths
 - decay asymmetries
 - gauge boson couplings (WW, Wγ, WZ, ZZ, Zγ)

motivations for these measurements:

- in general: consistency checks with SM
- search for deviations from SM:

production, decays and properties of gauge bosons are modified by "new physics":

- indirect Higgs mass limits (from precision measurements of M_{top} and M_{w})
- SM processes used to measure LHC luminosity
- precisely define SM background for signals of new physics

Z^0

precise determination of M_z und Γ_z from LEP data (e⁺e⁻ -> Z⁰ -> hadrons):

 $M_{z} = (91.1875 \pm 0.0021) \text{ GeV}$ $\Gamma_{z} = (2.4952 \pm 0.0023) \text{ GeV}$

- this precision cannot be achieved at hadron-colliders
- therefore at LHC: LEP-results (M_Z , Γ_Z) used as input Z⁰-decays used e.g. for calibration

production and decay of gauge bosons

(missing energy)

- hadronic decays (qq̄) cannot be used, due to dominating QCD background
- theoretical uncertainties mainly due to quark-structure of protons

LHC: observation of Z/W (leptonic decay)

 $Z \rightarrow \mu\mu$

with 25 primary vertices ...

Tevatron and LHC WS17/18 TUM

Tevatron and LHC

WS17/18 TUM S.Bethke, F. Simon

V9: Standard Model tests

11

Run Number: 152409, Event Number: 5966801 Date: 2010-04-05 06:54:50 CEST

7 TeV collisions

 $p_{T}(e+) = 34 \text{ GeV}$ $\eta(e+) = -0.42$ $E_{T}^{miss} = 26 \text{ GeV}$ $M_{T} = 57 \text{ GeV}$

WS17/18 TUM S.Bethke, F. Simon

Tevatron and LHC WS17/18 TUM S.Bethke, F. Simon V9: Standard Model tests

W, Z data sets

Tevatron:

Datensatz	Run I	Run IIa
W→Iv	77k	2300k
Z→II	10k	202k
WV (W→Iv, V=W,γ,Z)	90	1800
ZV (Z→II, V=W,γ,Z)	30	500
tt (mass sample, ≥1 b-tag)	20	800

Process	σ (nb)	Events/year ($\mathcal{L} = 5 \text{ fb}^{-1}$)			
$W \rightarrow ev$	30	~ 10 ⁸			
$Z \rightarrow e^+ e^-$	3.0	~ 107			
tī	1.6	~ 107			
Inclusive jets p _T > 200 GeV	200	~ 109			

currently: ~100 fb⁻¹

ATLAS / LHC:

reconstruction of Z, W

- Z selection: one lepton with tight criteria (high energy, isolation, in central region, unambiguous detector signature)
 - a second lepton with relaxed criteria
- W selection: one lepton with tight criteria
 - missing transverse energy / transv. momentum
- counting of events; corrections according to:
 - Trigger-efficiency (from data: redundant triggers,
 - 2-lepton-events etc)
 - reconstruction- and selection-efficiencies
 - luminosity

$$\sigma_{Z} = \frac{N}{\int Ldt \cdot Br(Z^{0} \rightarrow e^{+}e^{-}) \cdot \varepsilon_{ee}}$$

reconstruction of Z, W

auch verwendet:

$$M_T = \sqrt{p_T^{\ell} p_T^{\nu} (1 - \cos \Delta \phi)}$$

production cross sections (Tevatron)

W, Z boson production cross sections at $\sqrt{s} = 13$ GeV arXiv:1603.09222

W, Z boson production cross sections at $\sqrt{s} = 13$ GeV arXiv:1603.09222

LHC production cross sections

Tevatron and LHC

WS17/18 TUM S.Bethke, F. Simon

Bestimmung der W Masse

W Produktion am TeV:

Beobachtung im Detektor:

1. Berechne transversale Masse

$$M_T = \sqrt{(E_T^{\ell} + E_T^{\nu})^2 - (\vec{P}_T^{\ell} + \vec{P}_T^{\nu})^2}$$

➔ Verstehe E and P Skala und Auflösung

2. Bestimme fehlenden Transversalimpuls.

 $\vec{P}_T^{\nu} = -(\vec{P}_T^{\ell} + \vec{U})$

- modelliere, Underlying event" und Rückstossverteilung, etc.
- Messung von M_W aus M_T Verteilung
 → Vergleich von Verteilung in den Daten mit Templates

WS17/18 TUM S.Bethke, F. Simon

D0: W -> e v

$M_{\ensuremath{W}}$ from Tevatron and LEP

world average of M_w and its impact on precision SM predictions

$M_{W} \mbox{ at LHC }$

Measurement of the W-boson mass in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

arXiv:1701.07240

A measurement of the mass of the W boson is presented based on proton-proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC, and corresponding to 4.6 fb–1 of integrated luminosity. The selected data sample consists of 7.8× 10^6 candidates in the W $\rightarrow\mu\nu$ channel and 5.9×10⁶ candidates in theW \rightarrow ev channel. The W-boson mass is obtained from template fits to the reconstructed distributions of the charged lepton transverse momentum and of the W boson transverse mass in the electron and muon decay channels, yielding

 $m_W = 80370 \pm 7(stat.) \pm 11(exp. syst.) \pm 14(mod. syst.) MeV$

where the first uncertainty is statistical, the second corresponds to the experimental systematic uncertainty, and the third to the physics-modelling systematic uncertainty. A measurement of the mass difference between the W⁺ and W⁻ bosons yields $m_{W+-} = -29\pm28$ MeV.

$M_{W} \mbox{ at LHC }$

$M_{W} \mbox{ at } LHC$

$M_{\ensuremath{\mathsf{W}}}$ at LHC

W-boson charge	W^+		W^-		Combined	
Kinematic distribution	$p_{\mathbf{T}}^{\ell}$	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}
$\delta m_W [\text{MeV}]$						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

arXiv:1701.07240

M_W world summary

arXiv:1701.07240

Direkte Messung der W Breite

Anzahl der Ereignisse mit extrem hohen M_T hängt von der WBreite ab

Indirekte Messung der W Breite

Tevatron and LHC WS17/18 TUM

TUM S.Bethke, F. Simon

di-boson production and triple gauge couplings:

- SM: space-like diagrams are =0 if 2 of the 3 bosons are identical
- BSM: may contribute to triple gauge couplings in non-standard ways

Di-Boson production cross sections

36

Summary:

- detailed measurements with W und Z Bosonen at hadron colliders: production cross sections in good agreement with expectations of SM
- at design luminosities: 10⁹ W/a, 10⁸ Z/a
- Z-Boson Parameter (M_Z , Γ_Z) als input von LEP; Z⁰s als tool zur Kalibration
- significant tests of SM: precise determinations of
 - masses
 - decay width
 - production cross sections
 - production asymmetries
 - triple-gauge couplings (approximate)
- so far, all measurements in excellent agreement with SM predictions
- LHC: $\Delta M_w \sim 19 \; \text{MeV}$ (ATLAS)
- first measurements of triple-gauge couplings from di-boson production: also in good agreement; may become indicative for BSM physics

Literature:

- Karl Jakobs: Physics at the LHC -- From Standard Model measurements to Searches for New Physics, arXiv:1206.7024 .
- ATLAS Collab: Measurement of the W-boson am in pp collisions at √s= 7 TeV with the ATLAS detector, arXiv:1701.07240.
- Particle Data Group: Review of particle properties, Chin.Phys. C40 (2016) no. 10, 100001.

http://pdg.lbl.gov/2017/reviews/rpp2017-rev-standard-model.pdf

next lectures:

- 8.1.2018: BSM
- 15.1.2018: Higgs (I)
- 22.1.2018: Higgs (II)
- 29.1.2018: Heavy Quarks
- 5.2.2018: Future...

<u>Happy Holidays!</u>

Tevatron and LHC

WS17/18 TUM S.Bethke, F. Simon

39