Machine Learning
tools for String Theory

string data 2018

Munich, 29.03.2018

Jim Halverson, Fabian Ruehle,
Northeastern University University of Oxford

UNIVERSITY OF

OXFORD

Techniques from data science could
lead to interesting physics results in
many areas, and already have.

Even In string theory, one could use
data science to study formal systems.

Instead, applications here will tend to
focus one important big data problem:
the string landscape.

Many “Landscapes”

Boldness /
Controversy

A

Mostly Anthropic
Multiverse

Partially Anthropic
Multiverse

Many Pockets:
Multiverse

Many Vacua

Many Possibilities

“Although string theory clearly pointed towards an “anthropic ensemble” of
solutions since 1985, mentioning this in public was “not done”. Even nowadays,
one can attend an entire conference on “string phenomenology” without any
mention of anthropic arguments, except occasionally in a derogatory way.”

- Schellekens, The Emperor’s Last Clothes

KEY POINT:

regardless of which one each of us
currently thinks is correct, many of us
probably agree that this problem is
very important and difficult,

and involves enormous datasets.

(probably) so big we will never be
able to process them on any
concelvable classical computer.

what do we do!?

FORMAL THEORY

Is clearly required to

better understand the landscape,
the swampland, and

what they mean for the real world.

but will it be enough on its own? (no?)

Can we make progress using the suite of
techniques from data science? (finding out. . .)

Can this progress include rigorous results? (yes)

But can data science handle sets that will
never fit on a computer!? (sometimes)

Can results obtained from data science provide
motivation for formal theory? (yes)

Predict / Classify Make Rigorous Data Generation
(Fabian) (Jim) (Fabian)

* Neural Networks - Intelligible Al - Generative Adversarial
(super- / unsupervised) - Conjecture Generation Networks (GANSs)

Areas of Application

Search / Explore Data Structure Connections
(Jim) (Fabian) (Jim)

- Reinforcement - Persistent Homology . Graph Theory
Learning (RL) Network Science

Predict / Classify

w/ Neural Networks

[Krefl,Seong 17], [He 17], [Ruehle "17], [Liu'17]

Some Textbooks

Explains backpropagating NNs and train via genetic alg.
Good textbook explaining standard techniques

Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks
Reed, Marks
MIT Press, 1999

Also gives intuition for NN from to actual neurons (bio)

An Introduction To Neural Networks
James A Anderson
MIT Press, 1995.

Standard textbook

Neural Networks for Pattern Recognition
Christopher M. Bishop
Oxford press, 1995

Online textbook (animated examples)

Neural Networks and Deep Learning
Michael Nielsen
[http://neuralnetworksanddeeplearning.com], 2017

Some Libraries

* Tensorflow: Python library for neural networks n I'\
(and much more in fact)

+ Most-used in CS community = tons of examples (check github.com)
+ Comes with CUDA / GPU support (in principle)

+ Comes with tensor board (visualize flow, NN, ...)

@ Some things are cumbersome (e.g. storing trained NN,
Tensorboard takes some getting used to, ...) [tensorflow.com]

e Mathematica: 11.1 onward comes with NN functionality

+ Most of us are familiar with mathematica (more than Python)

+ Comes with CUDA / GPU support (in principle)

+ Comes with tons of high-level layers and functionality (e.g. you can do
NetTrain[myNN, trainSet], ...)

® Siower than Python

® Less examples than for e.g. Tensorflow [mathematica.com]

http://tensorflow.com
http://github.com
http://mathematica.com

Some Libraries

e Keras: Python library on top of Tensorflow / Keras
Theano

+ Provides higher level functions for NN creation and training

+ Uses Tensorflow or Keras in the back to do the computations
(wrapper for these libraries)

@ If you want to do things that are not implemented in eras need to know
Tensorflow anyways [keras.io]

 Chainer: Yet another Python Library ‘e

Chainer
+ ChainerRL library provides Reinforcement Learning

+ Examples on GitHub how to connect this to OpenAl Gym

@ Less used than Tensorflow
[chainer.org]

http://keras.io
http://chainer.org

Neural Networks - Idea

Based on information processing in human brain
Perceptrons / Axons get activated by electric pulses
Neurons connect the axons to create a neural network
Artificial NNs:

> Axons (connections) <+ Matrix multiplication

» Perceptrons/ Neurons (nodes) <+ Activation / response
function (Ramp, Sigmoid, Tanh, ...)

Neural Networks - Idea

~——
Input Hidden Output
Layer Layers Layer

Neural Networks - Idea

0.0
%%o oo
o’e

» Connections: Matrix Multiplication

» Nodes: Apply some activation function f

Neural Networks - Idea

.38

» Connections: Matrix Multiplication

@
o O
‘/

» Nodes: Apply some activation function f

NNs - When to use

e NNs are in most ML applications (RL, GANSs, ...)

e (Classical areas of applications for NNs

— B =— i ———— g

~ Universal approximation theorem:

| A sufficiently complex ANN can approximate any function to

| an (in principle) arbitrarily high precision. [Cybenko 89; Hornik '91] |

NNs - When to use

e NNs are in most ML applications (RL, GANSs, ...)

e (Classical areas of applications for NNs

|

|
|
.‘ A sufficiently complex ANN can approximate any function to
__an (in principle) arbitrarily high precision. [Cybenko '89; Hornik '91] |

~ Universal approximation theorem:

- — B i = e e —— g
I

Prediction Classification
o *

@ @

2 @ @

@ =

NNs - When to use

e NNs are in most ML applications (RL, GANSs, ...)

e (Classical areas of applications for NNs

|

|
|
,‘ A sufficiently complex ANN can approximate any function to
__an (in principle) arbitrarily high precision. [Cybenko '89; Hornik '91] |

~ Universal approximation theorem:

- — B i = e e —— g
I

Prediction

NNs - When to use

e Analyse prediction
» Divide data into train set + validation set
» Check performance on validation set

+ If machine performs much better on training set than
on validation set = overtraining

+ If machine performs equally bad on both = NN not
powerful enough

+ If machine performs equally well on both = NN well
designed

NNs - When to use

e Analyse classification: Confusion matrix, Matthews
correlation coefficient

Predicted class

——

c1 c2

Zrowl
ZIOWQ
Zcol 1 Zcol 2

c1

Actual class
c2

NNs - When to use

e Analyse classification: Confusion matrix, Matthews
correlation coefficient

e Example: Discriminator
Predicted class

——

Real Fake

m —
7] (qv)

(] row 1
g] 3 >
E 0
= L™
O row 2
S S >

Zcol 1 Zcol 2

NNs - When to use

e Analyse classification: Confusion matrix, Matthews
correlation coefficient

e Example: Discriminator
Predicted class

Discriminator wins ﬁ
R

eal Fake

w —

7] (4]

© ()] row 1
g1 3 >

E o

O fu Z row 2
< LL

Zcol 1 Zcol 2

NNs - When to use

e Analyse classification: Confusion matrix, Matthews
correlation coefficient

e Example: Discriminator
Predicted class

Discriminator wins ﬁ
R

eal Fake

)
7

((}] row 1
g1 8 >
E o
+= i
O row 2
S S >

Zcol 1 Zcol 2

NNs - When to use

e Analyse classification: Confusion matrix, Matthews
correlation coefficient

e Example: Discriminator
Predicted class

Discriminator loses ﬁ
R

eal Fake

m —
M
L O Zrow 1
O o
©
_E Q
O = Zrow 2
< L

Zcol 1 Zcol 2

NNs - When to use

e Analyse classification: Confusion matrix, Matthews
correlation coefficient

e Example: Discriminator
Predicted class

Generator wins
Discriminator loses
R

eal Fake

Zrow 1
Zrow 2

Actual class

Zcol 1 Zcol 2

Intelligible Al &

Conjecture Generation

Industry: e.g. [Weld, Bansal, 1803.04263]
Physics: [Carifio, Halverson, Krioukov, Nelson] [Halverson, Long, Ruehle, Tian to appear]

Intelligible Al: Idea

Algorithms learned from our data. Can we learn from them?
Via simplifications of an otherwise complex system?

Pros and cons:
neural nets are accurate, harder to understand (?).
simpler algorithms can be less accurate, easier to understand.

“Understanding” and theorems are different things.
Strongest form of intelligble Al? [Carifio, Halverson, Krioukov, Nelson]

Conjecture generation —> theorem.
Rigorous results.

Recommended packages: scikit-learn, TensorFlow

Example One: A ML-motivated Theorem

* Full slide set in extra slides, punchline In interest of time.

e Use info from ML, think a bit, write down conjecture.

Theorem: Suppose that with high probability the group G on vg, is G €
{Eg. E7. Eg} and that Es may only arise with m = (—2,0,0). Given these as-

sumptions, there are three cases that determine whether or not GG is Ej.
a) If amar = 5, m cannot exist in A, and the group on vg, is above Eg.

b) Consider a,,,, = 4. Let v; = a;vg, + bjvs + ¢;jv3 be a leaf built above vg,,
and B = m-wv9 and C' = m -v3. Then GG is Eg if and only if (B.b;) > 0 or

(C.¢;) > 0 Vi. Depending on the case, G may or may not be Ej.

¢) If apmar < 3. m € A, and the group is Ejg.

e Key point: ML-inspired focus on one particular variable, led
quickly (< 24 hours) to a theorem once identified.

“Back and forth” process, could be of broad applicability.

Example 1: Probability and Checks

* Probability computation:

. 36\~ 18\ " |
P(Egonvg, inT) = (1 —5) (1--9) ~ 00059128

&

computed using # appropriate edge trees relative theorem.

Result:

]- rd A -
Number of Fg Models on 7" = .00059128 x 3 X 2.96 x 10™° = 5.83 x 1071,

e Check: with 5 batches, 2 million random samples each.

From Theorem : 00059128 x 2 x 10° = 1182.56
From Random Samples 1183, 1181, 1194, 1125, 1195

Example 2: From Yesterday
Histogram of Dangerous Trees

80 A

70 1

| Data |
{ 413264 First No Sen §
i 407487 Last Sen |

60 -

50 -

40 +

! Accuracy: 98.5% }
30 A . o -
20 A

10 A

O..

0 2 4 6 8

Similar, but intuitive push-pull game. Intercept -7, trees with
coefs > 0 pull to right. Only need to add a few trees with
coefficient > 5 to be in serious danger of no Sen Limit.

Example 2: From Yesterday
Visualizing Dangerous Trees

e Red edges: any trees there or
on triangle wraparounds are in <—
the set of dangerous trees.

l.e. 12 bad ones associated N
with red edges.

e 25 other bad: 18 of which are NN
connected to vertices. \ BN

* remaining dangerous trees
are of understandable type.

intuitive, but ML —> linchpins. l

Pause: This is about taking promising trends in
data and trying to understand it better.

Moving from accurate pattern recognition
to a theory for the pattern, to how the theory
might make further predictions about the system.

This Is In our bones as theoretical physicists.
It is what we do.

Conjecture Generation - When to
Use

e \Where it might be good: theorems with lots of test cases.

o Alternatively: theorems where patterns in examples are very
complicated, hard to figure out

(machine figures out pattern, we prove it’s the right pattern).

Other thoughts or questions?
Ideas about where to apply it specifically,
or under what circumstances it might
generally be applicable?

Data Generation

GANs

So far no literature on the topic in string theory
as far as we know, but [Halverson, Long, Ruehle] to appear

Some CS/Math Literature

e Qriginal paper
Generative Adversarial Networks
lan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,

David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio
https://arxiv.org/abs/1406.2661 (statistics)

* More accesible intro (also by Goodfellow)

NIPS 2016 Tutorial: Generative Adversarial Networks
lan Goodfellow
https://arxiv.org/abs/1701.00160 (CS)

 Example of GANs faking images of celebrities

Progressive Growing of GANs for Improved Quality, Stability, and Variation
Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen
https://arxiv.org/abs/1710.10196 (CS)

e Qverview of different GANs

Are GANs Created Equal? A Large-Scale Study
Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, Olivier Bousquet
https://arxiv.org/abs/1711.10337 (statistics)

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1701.00160
https://arxiv.org/abs/1711.10337
https://arxiv.org/abs/1710.10196

GANSs - Idea

Discriminator vs Generator

» Learns to fake

» Learns to
discriminate real/ models that look real
fake models to the discriminator

e Discriminator trained to identity “torged” models
» Generator trained to generate realistic “forgeries”

* The two compete against each other:
» |f discriminator catches fraud of generator: (Generator loses

» If discriminator does not catch the fraud: Discriminator loses

GANSs - Idea

Cornell University
Library

arXiv.org

Real data Discriminator

=

'~

NESEEEL 0T
AL A D

gy

W DO

Influence GAN results

e Each machine tries to minimise its losses individually

e The game ends in a Nash equilibrium: No machine can
improve without changing the parameters of the others

e |nitial paper: Minmax game, but now much more GAN
loss functions have been explored

GAN DISCRIMINATOR LOSS GENERATOR LOSS

MM GAN Lp™ = —Equp,[log(D(2))] — Esnp, [log(1 — D(2))] L& = Eanp, [log(1 — D(2))]
NSGAN Ly = —Eenp, [log(D(x))] — Eznp, [log(l — D(2))] L& = —Eanp, [log(D(2))]
WGAN LY = By, [D(2)] + Esmp, [D(2)] LG = —Egnp, [D(2)]

WGAN GP LY = LY 4 NEsop [(|[[VD(az + (1 — a)|]2 — 1)°] L&Y = —Esp, [D(2))]

LSGAN L5 = —Earp, [(D(@) — 1)°] + Eanp, [D(2)7] LGN = —Eanp, [(D(E — 1)7]

DRAGAN L5 = L3 4 AE; 0.0 [(IVD(@)]l2 — 1)) LEVN = By, [log(1 — D())

BEGAN Lo = Eonp,[llz — AE(2)|[1] — ktEanp, [[|2 — AE(@)|[1] L& = Eanp, [[|2 — AE(Z)]]1]
[Lucic et al 17]

Influence GAN results

e Different loss functions lead to different GAN priorities:

» Minmax: generated models have low probability of
being fake

» Non-saturating: generated models have large
probability of being real

» Wasserstein: generated models minimise the
Wasserstein distance
Distance = amount of data to be changed x
distance from original distribution

e These are not the same thing!

GANs - When to use

e (Great to generate more models that are “like others”
e But several drawbacks
» Rather sophisticated (need a good background in NNs)
» Train for a veeeery long time (need to use CUDA / GPUs)
> Need parameters chosen consistently
+ No NN should over-power the other

+ Both should advance at the same speed (learning rate)

Search or Explore

(Reinforcement Learning)

Physics to appear: [Halverson, Nelson, Ruehle] [Halverson, Long, Ruehle, Tian],
[Halverson, Nilles, Ruehle, Vaudrevange], [Harries et al]

Reinforcement Learning: Idea

supervised ML predicts, RL (Al) explores / searches
most famous examples: (?) AlphaGo & AlphaGo Zero

* an agent interacts in an environment.

* |t perceives a state from state space.

* |ts policy picks and executes an action, given the state.
* agent arrives in new state, receives a reward.

e succesive rewards accumulate into return.

* return may penalize future rewards via discount factor.

* policy optimized to maximize reward, i.e. agent learns how to act!

Example: AlphaGo Zero

“Mastering the game of Go without human knowledge.”
Silver et al. (Google DeepMind), Nature Oct. 2017.

A long-standing goal of artificial intelligence is an algorithm that learns, tabula
rasa, superhuman proficiency in challenging domains. Recently, AlphaGo became
the first program to defeat a world champion in the game of Go. The tree search in
AlphaGo evaluated positions and selected moves using deep neural networks. These
neural networks were trained by supervised learning from human expert moves, and by
reinforcement learning from self-play. Here we introduce an algorithm based solely on
reinforcement learning, without human data, guidance or domain knowledge
beyond game rules. AlphaGo becomes its own teacher: a neural network is trained to
predict AlphaGo’s own move selections and also the winner of AlphaGo’s games. This
neural network improves the strength of the tree search, resulting in higher quality move
selection and stronger self-play in the next iteration. Starting tabula rasa, our new
program AlphaGo Zero achieved superhuman performance, winning 100-0 against
the previously published, champion-defeating AlphaGo.

Fact: Go has 10172 states, a “big” number, but for the task of playing
excellently, superhuman progress achieved tabula rasa.

AlphaGo Zero: The Money Plot

5,000 -
4,000 -
3,000 -

2,000 -+

Elo rating

-1,000 +
-2,000 -
-3,000

-4,000 -

1,000 -+

Silver et al, Nature 2017.

== Reinforcement learning
== Supervised learning
=== AlphaGo Lee

0

10

20

30 40 50
Training time (h)

60

70

here:

supervised learning =
training on human
expert games.

AlphaGo Lee =
previous version from
2016 that beat world
Champ Lee Sedol.

stronger than AlphaGo Lee in under 48 hrs, beat 100-0.

AlphaZero for Chess

similar architecture, arXiv preprint. Silver, Hubert, Schrittwieser et al

5000 - Chess

4000 +
o 3000 +
2000 +

— AlphaZero
1000 7 —— Stockfish

O

O 100 200 300 400 500 600 700
Thousands of Steps

stronger than Stockfish in under 4 hrs, beat thoroughly.

Implementation

model-free RL: want algorithms to work well regardless of environ.
means we can use CS-implemented algs!

three modules:

- Open Al (Musk) defines what an environ is and how to interface.

- ChainerRL provides RL algorithms and NN architecture.

- Physicists provide: the environment. two envs so far. ~50 new lines?

Environment é Chainer RL

4+ action space ! j 4+ method
4+ observation (state) g _ | ; (ASC,DQN,...)
space | i 4 * NN architecture
; (FF, LSTM,...)

algorithm: asynchronous advantage actor-critic (A3C) [Minh et al 20106]
(parallel CPU, not GPU)

Asynchronous Advantage
Actor-Critic (A3C)

[Mnih et al, DeepMind 2016]

“Our parallel reinforcement learning paradigm also offers practical benefits. Whereas previous
approaches to deep reinforcement learning rely heavily on specialized hardware such as GPUs (Mnih
et al.,, 2015, van Hasselt et al., 2015; Schaul et al., 2015) or massively distributed architectures (Nair
et al., 2015), our experiments run on a single machine with a standard multi-core CPU. \When
applied to a variety of Atari 2600 domains, on many games asynchronous reinforcement learning
achieves better results, in far less time than previous GPU-based algorithms, using far less
resource than massively distributed approached” - Mnih et al, Asynchronous Methods for Deep RL

* Actor-Critic Methods: NN for determining both
policy (actor) and value (critic).

e Asynchronous: many worker bees explore, report
back to king (critic) and queen (actor) bee.

l.e. use communal knowledge.

e >some 2016 GPU algs. Simple to run. Learns strat.

600

500

400

300

200

100

0
0

2

Breakout

DQN

1-step Q
1-step SARSA
n-step Q

A3C

4 6 8 10 12 14
Training time (hours)

re

Tell it how to step

(self,action):
done
. numsteps 1

.previousstate .state[0:] # save curstate to previous before changing

#H# Add tree according to action size
numnew = 0
if action > (.edgemoves) :

numnew . (. facemoves [action (.edgemoves)],action)
else:

numnew : (.edgemoves [action],action)

chop and compute new sections
. fpts, .gpts - (.pts [-numnew:], . fpts, .gpts)
.fsecs (v,fpt) for v in .pts] for fpt in . fpts]

[[4
.gsecs = [[6 : (v,gpt) for v in .pts] for gpt in .gpts]

my_reward . (numnew)
if my_reward .out_of_bounds_reward:
done
prev, cur : (.previousstate), . .state[0:])
alg . . fsecs, .gsecs)
print alg
print .State
print .polypoints
if prev . lLastsen:
. lastsen.add(prev)
modify output() to two functions, one for lastsenout, another for firstnosenout. then call one here
(prev)

if cur .firstnosen:
.firstnosen.add(cur)
call other here
(cur)

return np. .state), my_reward, done, {}

RL: Possible Use Cases

lla orbifolds for consistency and particle physics. (Ruehle, Nov talk)
Studying the llb lamppost. (Halverson’s talk)
Heterotic orbifolds. (Vaudrevange’s talk)

Heterotic free fermions. (Harries’ talk)

We have robots that can learn to
explore spaces intelligently.

What should we do?
What questions do you have?

Data Structure

Persistent Homology

[Cirafici 15 - 1512.01170 (hep-th)], [Cole, Shiu' 17 - 1712.08159]

Some Literature

* Physics paper w/ applications to Kreuzer-Skarke, CICYSs,
Landau-Ginzburg, flux vacua

Persistent Homology and String Vacua

Michele Cirafici
https://arxiv.org/abs/1512.01170 (hep-th)

* Math paper that explains basics and compares libraries

A roadmap for the computation of persistent homology
Nina Otter, Mason A. Porter, Ulrike Tillmann, Peter Grindrod, Heather A. Harrington

https://arxiv.org/abs/1506.08903 (Math/Algebraic Topology)

https://arxiv.org/abs/1512.01170
https://arxiv.org/abs/1506.08903

Some Libraries ..o

® Javaplex (Used N phySiCS paper) [http://appliedtopology.github.io/javaplex]
+ Written in JAVA=>platform independent

+ Easy to use

+ Implements a variety of complexes / algorithms
® Slower than others

® Had a bug (as of 2015) that caused some wrong results

® PerSGUS [http://www.sas.upenn.edu/~vnanda/perseus]

+ C++ (but versions for all platforms available)
+ Easy to use

® Slower than others

http://appliedtopology.github.io/javaplex
http://www.sas.upenn.edu/~vnanda/perseus

Some Libraries ..o

o (GUHDI [nttps://project.inria.fr/gudhi/software/]

+ Much faster than Javaplex / Perseus
+ Needs less memory than DIPHA
® Slightly slower than DIPHA

e DIPHA [https://code.google.com/p/diphal]

+ Much faster than Javaplex / Perseus
+ Slightly faster than DIPHA
® Needs more memory than GUHDI

® Ripser [https://qgithub.com/Ripser/ripser]

+ Fastest
+ Newest code

@ Least tested (since newest)

https://project.inria.fr/gudhi/software/
https://github.com/Ripser/ripser
https://code.google.com/p/dipha

Persistent Homology - Idea

e \Way to assign homology to discrete data / points

Persistent Homology - Idea

e \Way to assign homology to discrete data / points

e |dea:

> Replace data points by balls (several disconnected components)

i e,
I g o, =
e T /7
AR
10 k) /
LT
ost o g,
0.0 & YA X Kevy 7
05 ot . ::: So8¢ o, /2
o S t 1)
1 OEV/ Nk, :,:'-:l:::?-i':‘ A
4 b T "'?:: :.:0:"' o
-2 s
0 T~ 7/\/—2

Persistent Homology - Idea

e \Way to assign homology to discrete data / points

e |dea:
> Replace data points by balls (several disconnected components)

» As radius of points grow, components connect / form cycles / ...

Persistent Homology - Idea

e \Way to assign homology to discrete data / points
e |dea:

> Replace data points by balls (several disconnected components)

» As radius of points grow, components connect / form cycles / ...

> When radius grows further, cycles can disappear again

Persistent Homology - Idea

e \Way to assign homology to discrete data / points

e |dea:
» Replace data points by balls (several disconnected components)
» As radius of points grow, components connect / form cycles / ...

» When radius grows further, cycles can disappear again

e For each k-cycle determine how long it exists as a function
of the sphere radius = barcode (Betti number vs radius)

e The longer a cycle persists the more likely it is to be a true
feature

Persistent Homology - Idea

 Covering of metric space X with balls of radius ¢
= Cech complex Cech, (X)

e Checking all overlaps/intersections too expensive = approx.

> Vietoris-Rips complex: Approximates Chech complex but
requires only pairwise comparisons

> Inclusion of spaces X., C X.,,, = Filtration of simplices

VR, (X) C VR, (X) => Inclusion of Homologies
HZ(VR& (X)) C H’i(VRSi—I—l (X)) —> Barcode

> Delauny complex: Limits #(complexes) in high dim

> Alpha-complex: Subcomplex of Delauny whose dim is at
most that of X

» Witness-complex: Subcomplex of Delauny constructed
from a subset of all points in X

PH - When to use

e Analyze structure of discrete data independent of choice of
metric / coordinates

e Problems:

e Slow to compute higher Betti numbers 5" (i > 2)

e Homologies (especially higher ones) hard to interpret if
discrete data does not represent spatial information itself

e Does PH encode information that cannot be gained from
e.g. histograms, clustering, ... ?

Connections

(Network Science)

e.g. [Taylor, Wang] [Carifio, Cunningham, Halverson, Krioukov, Long, Nelson]

Networks: Idea

Graph theory applied to real world systems, where maybe the nodes and / or
edges are decorated with extra data.

Pro: abstract and “minimal”, can apply it to basically any objects that have
relationships between them.

Con: abstract and “minimal”, can apply it to basically any objects that have
relationships between them.

E.g. dynamics of epidemic spread and quarantine.
[Vespignani et al]

Tons of useful network / graph theory packages out there, e.g NetworkX, just
Google and compare benchmarks.

Many techniques and applications, but maybe not too many entries yet into
the string literature of the more advanced techniques?
(Our paper only needed very simple techniques, given the complicated graph).

Landscape as a Network

e Semi-precise version: (dream scenario if we knew everything)
- Vacua are nodes, labelled with all assoc. phys. data.
- Two directed edges between each node pair,
- Label w/ tunneling rates each direction.
- Determine right cosmology, compute vacuum selection.

e Coarse-grain 1: Topological Transitions (see Long’s talk)
- geometries are nodes, labelled by topological data.
- edges if transition of chose type (e.g. blowup) exist between.
- determine toy cosmology, compute vacuum selection.
- consider robustness or not to deviations from toy model.

e Coarse-grain 2: Flux transitions
- flux configurations are nodes
- edges if two nodes differ by single flux unit
- could be democratic, or label according to cohomology basis

Other natural networks in string theory?

BACKUP SLIDES

An Eg Puzzle

e Gauge group result: dominated by G; € {Eg, Fy, Go, A1}
(interesting: groups with only self-conjugate reps!)

e Something SM-useful? E67 SU(3)?
- Simple conditions / probabilities for then not known. JH, Long, Sung

- In random samples, prob ~ 1/1000.
- When EG6 arises in RS, on a distinguished vertex: (1,-1,-1).

e Machine Learning: Carifio, Halverson, Krioukov, Nelson
Q: Can we train an ML model to accurately predict yes or no for E6 on (1,-1,-1)?
Q: If so, can we learn how it makes its decision?

In our paper: called conjecture generation.
as a CS buzzword: intelligible Al.

Point: by using machine learning to generate conjectures, we may be able to
take its numerical / empirical results and turn it into rigorous results.

Training the Model

e Supervised machine learning: given a large number of
(input,output) pairs, learn to predict output given input, and
then test on unseen data, see how well the model does.

 Training data:

Input: (max height above v, # of such rays) for all v in polytope.
Output: E6 on (1,-1,-1) or not.

Sanv, :=1{v € V|v = avy + buy + cvs, a,b,c > 0}
o A
(a“'"“lir’ |Samu;1'.v) VU S AI — E6 on vE(i or nOt

* sklearn: a very nice free Python package.

* Training sample: 10000 random with no E6, 10000 random with EG.

Evaluating the Model on Unseen Data

0.996 1

0.994

0.992 1

0.990 1

0.988

0.986 1

0.984 1

LR LDA

CART SVM

KNN CART SVM

50/50 Validation Set
Unenriched Set

KNN
LR LDA
994 .994

I88 988

982 987 989
981 988 983.

Displayed:

whisker plots of %
accuracy with 10-fold
cross validation.

Gold bar:
mean % accuracy.

Factor analysis:
only two of the
variables really matter:

'S"
(a’ THLCL » Qmor:-VER)

Conjecture Generation

fmar | Samaz.vpe| Fred. for Egon vp, Hyperplane Distance
4 5 No 0.88
== = = 4 G No 0.29
 Organizing principle? See PR Yoo 031
. . 4 3 Yes —().90
what it gets right and wrong! P o o
. . . 4 10 Yes —2.009
(using the model trained with L Yoo 20
. . . 1 12 Yes 3.28
logistic regression.) o e
| 11 Yes -7
4 15 Yes -5.07
- 4 16 Yes 5.67
e Observation: 1 17 Yes 6.26
4 18 Yes —6.85
amax = 5: always no i Yes
4 20) Yes —x.04
amax = 4: Usua”y No. 4 21 Yes —8.64
| 22 Yrs 09.23
| 23 Yes —-0.83
4 24 Yes — 11142
) | No 7.34
. . 5) 2 No (.75
* [nitial Conjecture: 3 No 6.15
D l No 0,56
D D No 1.96
Conjecture: If a,,., = 0 for vpg. then vpg does not carty P, If 0,0, = 4 for 5 G No 4.37
R 1L may or mav not carry £ though it is more likely that it does, 5 ? No 3.78
D 3 No 3.18
D 9 No 2.59
D 10) No 1.99
) 11 No 1.40

No ()50

v
=
(W

Conjecture Refinement and Theorem

e Use info from ML, think a bit, write down conjecture.

Theorem: Suppose that with high probability the group G on vg, is G €
{E¢. E7, Es} and that Eg may only arise with m = (—2,0,0). Given these as-

sumptions, there are three cases that determine whether or not GG is Ej.
a) If amar = 5, m cannot exist in A, and the group on vg, is above Eg.

b) Consider a,,.. = 4. Let v; = a;vg, + bjva + ¢;v3 be a leaf built above vg,.
and B =m-wv9 and C' = m -v3. Then GG is Eg if and only if (B.b;) > 0 or

(C.¢;) > 0 Vi. Depending on the case, G may or may not be Ej.

¢) If apar < 3. m € A, and the group is F.

e Key point: ML-inspired focus on one particular variable,
led quickly (< 24 hours) to a theorem once identified.

“Back and forth” process, could be of broad applicability.

Probability and Checks

* Probability computation:

. 36\ 18\ ” |
P(Egonvg, InT) = (1 - —) (1 - —) ~ 00059128
! 82 82

computed using # appropriate edge trees relative theorem.

Result:

1 —_— e
Number of £y Models on 7' = .00059128 x 3 X 2.06 x 1077 = 5.83 x 107!,

e Check: with 5 batches, 2 million random samples each.

From Theorem : 00059128 x 2 x 10°% = 1182.56
From Random Samples 1183, 1181, 1194. 1125, 1195

Intelligible Al from Logistic
Regression Coefficients Histogram

80 A

70 1

| Data |
{ 413264 First No Sen §
407487 Last Sen |

60 -

50 -

40 +

! Accuracy: 98.5% }
30 A . o -
20 A

10 A

"o 2 4 6 8

Similar, but intuitive push-pull game. Intercept -7, trees with
coefs > 0 pull to right. Only need to add a few trees with
coefficient > 5 to be in serious danger of no Sen Limit.

Visualizing Dangerous Trees,
Working Towards Conjecture

e Red edges: any trees there or
on triangle wraparounds are in <—
the set of dangerous trees.

l.e. 12 bad ones associated N
with red edges.

e 25 other bad: 18 of which are NN
connected to vertices. \ BN

* remaining dangerous trees
are of understandable type.

intuitive, but ML —> linchpins. l

