The Number of String Standard Models

Andre Lukas

University of Oxford

string_data, Munich, March 2018

in collaboration with: Lara Anderson, Andreas Braun, Callum Brodie, Andrei Constantin, James Gray, Yang-Hui He, Challenger Mishra, Eran Palti

based on: 1202.1757, 1307.4787, 1509.02729, 1706.07688, to appear

How many standard models*does string theory contain?

* At this level: String models with the (MS)SM spectrum.

<u>Outline</u>

- Introduction: line bundle models
- The data
- Counting standard models
- Conclusion

Introduction: line bundle models (Anderson, Gray, Lukas, Palti, 1106.4804)

Data to define a heterotic line bundle model we need:

- A Calabi–Yau 3–fold $\,X\,$
- A line bundle sum $V = L_1 \oplus \cdots \oplus L_5$ on X, $c_1(V) = 0$, so structure group is $S(U(1)^5)$.
- vanishing slopes $\mu(L_a) \equiv c_1(L_a) \wedge J^2 \stackrel{!}{=} 0$

- Anomaly: $c_2(TX) - c_2(V) - c_2(\tilde{V}) = [C]$ in practice: $c_2(V) \le c_2(TX)$ N=1, D=4 GUT with gauge group $SU(5) \times S(U(1)^5)$ and matter in $10, \overline{10}, \overline{5}, 5, 1$

- freely acting symmetry Γ on X, so $\hat{X}=X/\Gamma$ is smooth and non simply-connected
- bundle V needs to be equivariant so it descends to a bundle \hat{V} on \hat{X}
- complete bundle $\hat{V} \oplus W\,$ with Wilson line $W\,$ to break GUT group

standard-like model (hopefully) with gauge group $G_{\rm SM} \times S(U(1)^5)$

The associated 4d GUT theories:

Gauge group
$$SU(5) \times S(U(1)^5)$$

matter multiplets: $\mathbf{10}_a, \ \mathbf{\overline{10}}_a, \ \mathbf{5}_{a,b}, \ \mathbf{\overline{5}}_{a,b}, \ \mathbf{1}_{a,b}$

	multiplet	$S(U(1)^5)$ charge	associated line bundle L	contained in	
C 111 I	$10_{\mathbf{e}_a}$	\mathbf{e}_a	L_a	V	$\longleftarrow = 3 \Gamma $
families and	$ar{10}_{-\mathbf{e}_a}$	$-\mathbf{e}_a$	L_a^*	V^*	$\leftarrow = 0$
mirror families	$ar{f 5}_{{f e}_a+{f e}_b}$	$\mathbf{e}_a + \mathbf{e}_b$	$L_a\otimes L_b$	$\wedge^2 V$	
	$5_{-\mathbf{e}_a-\mathbf{e}_b}$	$-\mathbf{e}_a-\mathbf{e}_b$	$L_a^* \otimes L_b^*$	$\wedge^2 V^*$	$\Rightarrow 3 1 $
C^+_{ab} bundle	$1_{\mathbf{e}_a-\mathbf{e}_b}$	$\mathbf{e}_a - \mathbf{e}_b$	$L_a \otimes L_b^*$	$V \otimes V^*$	
C^{ab} moduli	$1_{-\mathbf{e}_a+\mathbf{e}_b}$	$-\mathbf{e}_a+\mathbf{e}_b$	$L_a^*\otimes L_b$		

Number of each multiplet type obtained from $H^1(X,L)$.

Arena: complete intersection CY manifolds (CICYs)

ambient space: ${\cal A}$

$$\mathbf{l} = \bigotimes_{r=1}^{m} \mathbb{P}^{n_r}$$

CICY: $X = \{p_i = 0\} \subset \mathcal{A}$

for example:

$$\mathbb{P}^{4}|5], \begin{bmatrix} \mathbb{P}^{2} & 3 \\ \mathbb{P}^{2} & 3 \end{bmatrix}, \begin{bmatrix} \mathbb{P}^{1} & 2 \\ \mathbb{P}^{1} & 2 \\ \mathbb{P}^{1} & 2 \\ \mathbb{P}^{1} & 2 \end{bmatrix}, \begin{bmatrix} \mathbb{P}^{1} & 1 & 1 \\ \mathbb{P}^{1} & 1 & 1 \\ \mathbb{P}^{1} & 1 & 1 \\ \mathbb{P}^{1} & 1 & 1 \end{bmatrix} \xleftarrow{-J_{2}}_{:}$$

Complete classification of about 8000 spaces (Hubsch, Green, Lutken, Candelas 1987)

Classification of freely-acting discrete symmetries (Braun, 2010)

Line bundle cohomology can be computed. (Anderson, He, Lukas, 2008) Focus on favourable Cicys: $H^{1,1}(X) = \operatorname{Span}(J_i)$, $J = t^i J_i$

line bundles $L = \mathcal{O}_X(\mathbf{k})$ where $c_1(L) = k^i J_i$

basic data specifying a model:

 $\begin{aligned} X &\sim \left[\mathcal{A} \mid Q\right] &\longrightarrow h := h^{1,1}(X) , \quad c_i := c_{2i}(TX) , \quad d_{ijk} \\ V &\sim \left(k_a^i\right)_{a=1,\dots,5}^{i=1,\dots,h} &\longrightarrow \left(2k_{\max}+1\right)^{4h} \text{ choices for } |k_a^i| \leq k_{\max} \end{aligned}$ symmetry $\Gamma \longrightarrow \Gamma = \mathbb{Z}_2$ most common

subject to:

$$c_{1}(V) = 0 \qquad \longrightarrow \qquad \sum_{a} k_{a}^{i} = 0, \quad i = 1, \dots, h$$

$$c_{2}(V) \leq c_{2}(TX) \qquad \longrightarrow \qquad -\frac{1}{2} d_{ijk} \sum_{a} k_{a}^{j} k_{a}^{k} \leq c_{i}, \quad i = 1, \dots, h$$

$$\mu(L_{a}) = 0 \qquad \longrightarrow \qquad d_{ijk} k_{a}^{i} t^{j} t^{k} = 0, \quad a = 1, \dots, 5, \quad \mathbf{t} \in \mathcal{K}(X)$$

$$ind(V) = -6 \qquad \longrightarrow \qquad \frac{1}{6} d_{ijk} \sum_{a} k_{a}^{i} k_{a}^{j} k_{a}^{k} = -6$$

essentially, set of diophantine equations

The data

(Anderson, Gray, Constantin, Lukas, Palti, 1307.4787, 1202.1757)

An exhaustive scan over favourable Cicys with $h^{1,1} \leq 6$: 68 manifolds

Requires scanning over $\sim 10^{40}$ bundles (k_a^i)

How do we know we have found all viable models?

Table 6: Number of models as a function of k_{max} on CICYs with $h^{1,1}(X) = 6$. Total number of models: 41036

$X, \Gamma $	$X, \Gamma \qquad k_{\rm m} = 1$	$k_{\rm m} = 2$	$k_{\rm m} = 3$	$k_{\rm m} = 4$	$k_{\rm m} = 5$	$k_{\rm m} = 6$	$k_{\rm m} = 7$	$k_{\rm m} = 8$	$k_{\rm m} = 9$	$k_{\rm m} = 10,$
									11, 12, 13	
3413, 3	0	2278	2897	2906	2906	2906				
4190, 2	11	766	1175	1243	1246	1247	1249	1249	1249	
5273, 2	29	4895	7149	7738	7799	7810	7810	7810		
5302, 2	0	4314	5978	6360	6369	6369	6369			
5302, 4	0	11705	16988	17687	17793	17838	17868	17868	17868	
5425, 2	0	2381	3083	3305	3337	3337	3337			
5958, 2	0	148	224	240	253	253	253			
6655, 5	0	92	178	189	194	194	198	201	202	203
6738, 2	1	2733	4116	4346	4386	4393	4399	4399	4399	

Results:

Number of consistent SU(5) GUT models with correct indices:

$h^{1,1}(X)$		2	3	4	5	6	total
#models	0	0	6	552	21731	41036	63325

After demanding absence of $ar{10}$ and presence of $ar{5}-ar{5}$ pair:

34989 models

Experience with sub-set of models indicates practically all of these will lead to (MS)SM spectra.

Available at:

http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html

Counting Standard Models

Number of SU(5) GUT models per CY: $N = N(h, c_i, d_{ijk})$

All known CYs: $h_{\rm max} = 491$ $\log N(h_{\rm max}) \simeq 683$

however . . .

 \ldots strong dependence of N on c_i and d_{ijk}

Why is the number of models even finite? (Constantin, Lukas, Mishra, 1509.02729)

moduli space metric:
$$G_{ij} = -3\left(\frac{\kappa_{ij}}{\kappa} - \frac{2\kappa_i\kappa_j}{3\kappa^2}\right)$$

 $\kappa = d_{ijk}t^it^jt^k$
 $\kappa_i = d_{ijk}t^jt^k$
 $\kappa_{ij} = d_{ijk}t^k$

$$\kappa_{i}k_{a}^{i} = 0$$

$$0 < \sum_{a} \mathbf{k}_{a}^{T}G\mathbf{k}_{a} = -\frac{3}{\kappa}d_{ijk}\sum_{a}k_{a}^{i}k_{a}^{j}t^{k} = \frac{6}{\kappa}t^{i}c_{2i}(V) \le \frac{6}{\kappa}t^{i}c_{2i}(TX) \le \frac{6}{\kappa}|\mathbf{t}||c_{2}(TX)|$$

bound on line bundle sums:

$$\sum_{a} \mathbf{k}_{a}^{T} \tilde{G} \mathbf{k}_{a} \le |c_{2}(TX)| \qquad \qquad \tilde{G} = \frac{\kappa}{6|\mathbf{t}|} G$$

Shows finiteness, provided we stay away from the Kahler cone boundaries.

Volume in
$$k_a^i$$
 space: $V \sim \left(\frac{|c_2(TX)|}{\bar{d}} \right)^{5h/2}$

Asymptotic count of solutions goes with a power of the volume. (Browning, Heath-Brown, Salberger, math/0410117)

Assume $\log N = x$ where

$$x = A_0 + A_1h + (A_2 + A_3h)\log|c_2(TX)| + (A_4 + A_5h)\log \overline{d}$$

A fit of the data leads to

$$x \simeq 8 + \frac{3}{4}h + \left(-7 + \frac{1}{3}h\right)\log|c_2(TX)| + \left(2 - \frac{1}{4}h\right)\log\bar{d}$$

How seriously should this be taken?

Result for CICYs – $~\sim 10^{19}$ standard models – should be trusted.

There are caveats extrapolating to $h^{1,1} = 491$.

- Low $h^{1,1}$ data scattered, so probably large error at $h^{1,1} = 491$. (But there will still be 10^{hundreds} standard models.)
- ullet There may be few discrete symmetries for CYs with large $h^{1,1}$.

The Kreuzer-Skarke list contains only 16 cases with toric symmetries, all of them for $h^{1,1} \leq 7$. (Batyrev, Kreuzer, math/0505432)

More general symmetries for Kreuzer-Skarke CYs have only been explored for low $h^{1,1}$. (Braun, Lukas, Sun, 1704.07812) (Altman, Gay, He, Jejjala, Nelson, 1411.1418)

• There are other obstructions to a physical model.

For example: Line bundle models on elliptically fibered CYs (with a toric base). (Braun, Brodie, Lukas, 1706.07688)

Number of physical models:

base B	k_{\max}	$k_{ m mod}$	#models
F_2	10		0
F_4	10		0
F_7	10	4	54
F_9	7	6	22
F_{13}	3	3	≥ 46
$F_{15}^{(a)}$	3	3	≥ 236
$F_{15}^{(b)}$	3	3	≥ 84
total	_		≥ 442

but . . .

Figure 2: Frequency plot of $h^1(V^*)$ which gives the number of $\overline{10}$ multiplets, combined for all base spaces.

Figure 3: Frequency plot of $h^1(\wedge^2 V^*)$ which gives the number of **5** multiplets, combined all base space spaces.

No example without mirror family and always ≥ 19 Higgs pairs!

Conclusion

- Algorithms (e.g. to compute cohomology) too slow at large $h^{1,1}$. (need better algorithms, machine learning?)
- Size of model spaces increases exponentially with h^{1,1}, so systematic search is not possible.
 (need more sophisticated search methods, genetic algorithms?)
- Even on conservative estimates the number of models with the MSSM spectrum amounts to more data than currently stored in total. (need better discriminators than spectrum: coupling constants)

Thanks and good luck!