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How many standard models does string theory contain?*

 At this level: String models with the (MS)SM spectrum.*
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Introduction: line bundle models

Data to define a heterotic line bundle model we need: 

- A Calabi-Yau 3-fold X

- vanishing slopes µ(La) ⌘ c1(La) ^ J2 !
= 0

- A line bundle sum                      on    ,

              , so structure group is           .  

XV = L1 � · · ·� L5

c1(V ) = 0 S(U(1)5)

- Anomaly:                                   

  in practice:                      

c2(TX)� c2(V )� c2(Ṽ ) = [C]
c2(V )  c2(TX)

N=1, D=4 GUT with

gauge group


and matter in 
SU(5)⇥ S(U(1)5)

10, 1̄0, 5̄,5,1

(Anderson, Gray, Lukas, Palti, 1106.4804)



- freely acting symmetry   on   , so 

  is smooth and non simply-connected

� X X̂ = X/�

- bundle   needs to be equivariant so it

  descends to a bundle    on 

V
X̂V̂

- complete bundle           with Wilson line

  to break GUT group

WV̂ �W

standard-like model

(hopefully) with

gauge group
GSM ⇥ S(U(1)5)



The associated 4d GUT theories:

Gauge group SU(5)⇥ S(U(1)5)

matter multiplets: 10a, 1̄0a, 5a,b, 5̄a,b, 1a,b

multiplet S(U(1)5) charge associated line bundle L contained in

10ea
ea La V

1̄0−ea
−ea L∗

a V ∗

5̄ea+eb
ea + eb La ⊗ Lb ∧2V

5−ea−eb
−ea − eb L∗

a ⊗ L∗

b ∧2V ∗

1ea−eb
ea − eb La ⊗ L∗

b V ⊗ V ∗

1−ea+eb
−ea + eb L∗

a ⊗ Lb

Table 1: Multiplet content, charges and associated line bundles of the SU(5) × S(U(1)5) GUT

theory. The indices a, b, . . . are in the range 1, . . . , 5 and ea denotes the standard five-dimensional

unit vector in the ath direction. The number of each type of multiplet is obtained from the first

cohomology, H1(X,L), of the associated line bundle L.

The further breaking of the GUT theory to the standard model proceeds in the standard way via Wilson

lines. For the bundle V to descend to the quotient Calabi-Yau manifold, X/Γ, it has to be equivariant under

the symmetry Γ [39], a property which can be explicitly checked for line bundles using the methods described in

Ref. [12]. Note that for an equivariant line bundle, L, the cohomology groups Hi(X,L) form representations

under the group Γ. A Wilson line on the quotient, pointing into the standard hypercharge direction then

breaks the GUT group into the standard model group times the massive S(U(1)5) symmetry. Let us consider

a standard model multiplet with Wilson line representation RW which originates from a GUT multiplet with

associated line bundle, L. The number of these multiplets can be computed from the Γ invariant part of

H1(X,L)⊗RW . In essence, once the GUT multiplet content is known, computing the particle content after

Wilson line breaking is a matter of applying representation theory of the finite group Γ.

3 Additional U(1) symmetries and Green-Schwarz mechanism

We turn now to the fate of the four additional U(1) symmetries in S(U(1)5) ∼= U(1)4 which arise in our

models. The Green-Schwarz mechanism in heterotic theories has been understood for many years (see [40]

and [26,41–43] for some recent papers on the subject). It is known that Abelian factors in the bundle structure

group give rise to a gauging of certain axion shift symmetries in the four dimensional effective theory. In our

context, for each line bundle, La, in V , the Kähler axions, χi, the supersymmetric partners of the Kähler

moduli, ti, acquire the following transformation4

δχi = −ci1(La)ηa , (3.5)

with transformation parameter ηa. Note that, from Eq. (2.2), only four of these transformation, corresponding

to the four U(1) symmetries, are independent. Each such transformation leads to a D-term which schematically

reads

Da =
µ(La)

κ
−
∑

I

QaI |CI |
2 . (3.6)

Here, κ = dijktitjtk is the Kähler moduli space pre-potential with the triple intersection numbers dijk of X

and CI are matter fields and bundle moduli with charges QaI under S(U(1)5). The slope, µ(La), of the line

bundle La is defined as

µ(La) = ci1(La)κi with κi = dijkt
jtk . (3.7)

4The equations below receive a one loop correction due to a non-trivial shift of the dilatonic and M5-brane axions. This has been

explicitly studied in Ref. [26,42] but will be neglected in the present context as it does not affect our discussion.

5

families and

mirror families

bundle

moduli

C+
ab

C�
ab

Number of each multiplet type obtained from           . H1(X,L)

= 3|�|
= 0

� 3|�|



Arena: complete intersection CY manifolds (CICYs)

(Hubsch, Green, Lutken, Candelas 1987)
Complete classification of about 8000 spaces

Classification of freely-acting discrete symmetries
(Braun, 2010)

Line bundle cohomology can be computed.
(Anderson, He, Lukas, 2008)

ambient space: A =
mO
r=1

Pnr

CICY: X = {pi = 0} ⇢ A

⇥
P4|5

⇤ 
P2 3
P2 3

�
2

664

P1 2
P1 2
P1 2
P1 2

3

775

2

66664

P1 0 2
P1 1 1
P1 1 1
P1 1 1
P1 1 1

3

77775, , ,for example:

J1
J2
...



L = OX(k) c1(L) = kiJiline bundles                 where

basic data specifying a model: 

X ⇠ [A |Q] h := h1,1(X) , ci := c2i(TX) , dijk

V ⇠
�
kia

�i=1,...,h

a=1,...,5
(2k

max

+ 1)4h choices for |kia|  k
max

symmetry   � � = Z2 most common

Focus on favourable Cicys:                         , H1,1(X) = Span(Ji) J = tiJi



subject to:

c1(V ) = 0
X

a

kia = 0 , i = 1, . . . , h

c2(V )  c2(TX) �1

2
dijk

X

a

kjak
k
a  ci , i = 1, . . . , h

µ(La) = 0 dijkk
i
at

jtk = 0 , a = 1, . . . , 5 , t 2 K(X)

ind(V ) = �6
1

6
dijk

X

a

kiak
j
ak

k
a = �6

essentially, set of diophantine equations



The data
An exhaustive scan over favourable Cicys with            : 68 manifolds h1,1  6

Requires scanning over         bundles  ⇠ 1040 (kia)

How do we know we have found all viable models?

Table 6: Number of models as a function of k
max

on CICYs with h1,1(X) = 6. Total
number of models: 41036

X, |�| km = 1 km = 2 km = 3 km = 4 km = 5 km = 6 km = 7 km = 8 km = 9
km = 10,

11, 12, 13

3413, 3 0 2278 2897 2906 2906 2906

4190, 2 11 766 1175 1243 1246 1247 1249 1249 1249

5273, 2 29 4895 7149 7738 7799 7810 7810 7810

5302, 2 0 4314 5978 6360 6369 6369 6369

5302, 4 0 11705 16988 17687 17793 17838 17868 17868 17868

5425, 2 0 2381 3083 3305 3337 3337 3337

5958, 2 0 148 224 240 253 253 253

6655, 5 0 92 178 189 194 194 198 201 202 203

6738, 2 1 2733 4116 4346 4386 4393 4399 4399 4399

7 An Example

For illustration, we would like to present a model from our database, which is accessible here [60]. The example

is based on the Cicy with number 7447, defined by the configuration matrix and line bundle sum

X =

P1

P1

P1

P1

P1

⇤

⌥⌥⌥⌥⌥⇧

1 1

1 1

1 1

1 1

1 1

⌅

�����⌃

5,45

�80

, V =

⇤

⌥⌥⌥⌥⌥⇧

�1 �2 1 1 1

0 �2 �1 1 2

0 2 �1 1 �2

0 2 0 0 �2

1 0 0 �2 1

⌅

�����⌃
.

According to Ref. [53], the manifold X can be smoothly quotiented by a group of order 4. The columns of

the second matrix correspond to the first Chern classes of the five line bundles composing V . The dimension

h•(X,V ) =
�
h0(X,V ), h1(X,V ), h2(X,V ), h3(X,V )

⇥
of the bundle cohomologies for V are explicitly given by

h•(X,V ) = (0, 12, 0, 0)

h•(X,⇥2V ) = (0, 15, 3, 0)

The model has a chiral asymmetry of 12, which, after quotienting, is reduced to 3. It contains a number

of 5 � 5 pairs, which after introducing Wilson lines lead to one (or possibly more than one) pair of Higgs

doublets.

The above example is interesting as it satisfies the anomaly cancellation condition without the addition of

any 5-branes. In this case,

c2(TX).Ji = c2(V ).Ji = (24, 24, 24, 24, 24)

As the ranks of V and TX are the same, and their second Chern classes match, one could study the

interesting problem1 of deforming V to TX, which would bring us back to the standard embedding. Our

database contains 348 such models which saturate the inequality 4.4.

1This idea was suggested to one of us by S.-T. Yau in a private communication.
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Results:

1 2 3 4 5 6

0 0 6 552 21731 41036 63325

h1,1(X)

#models

total

Number of consistent SU(5) GUT models with correct indices:

1̄0 5� 5̄After demanding absence of     and presence of         pair:  

34989 models

Experience with sub-set of models indicates practically all of these

will lead to (MS)SM spectra.

http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html

Available at:



Counting Standard Models

N(h) ' �4.5 + 1.4h

h1,1= 1 h1,1= 2 h1,1= 3 h1,1= 4 h1,1= 5 h1,1= 6
0

1

2

3

logHNL versus h1,1

logN(h) ' �4.5 + 1.4h

For CICYs: h
max

= 19 logN(h
max

) ' 22

All known CYs: logN(h
max

) ' 683h
max

= 491

Number of SU(5) GUT models per CY: N = N(h, ci, dijk)



however . . .

1 2 3 4 5 6 h1,1

1

2

3

4

logHNL logHNL versus h1,1 for each CY

. . . strong dependence of    on     and    N ci dijk



Why is the number of models even finite?

4 A semi-analytic bound

We write the line bundles in Eq. (2.2) as La = OX(ka), so that their first Chern class is given by c
1

(La) = kiaJi.

The integers kia are constrained by the conditions

nX

a=1

kia = 0 (4.1)

for all i = 1, . . . , h1,1(X) which are equivalent to c
1

(V ) = 0. Further, from Eq. (2.5), the second Chern class

is given by

c
2i(V ) = �1

2

nX

a=1

dijk k
i
a k

j
a , (4.2)

and in order to be able to satisfy the anomaly cancellation condition we require that

c
2i(V )  c

2i(TX) , (4.3)

in accordance with Eq. (2.8). The slope zero conditions (2.3) take the form

dijk k
i
a t

j tk = 0 , (4.4)

for i = 1, . . . , h1,1(X), and these equations have to be simultaneously satisfied in the interior of the Kähler

cone (here taken to be characterised by ti > 0 for all i). The question we would like to address is whether line

bundle sums V on a given Calabi-Yau manifold X, subject to the c
1

(V ) = 0 constraint (4.1), the anomaly

constraint (4.3) and the slope zero conditions (4.4) constitute a finite class. If they do, the number of

generations

N
gen

= �ind(V ) = �1

6
dijk

nX

a=1

kia k
j
a k

k
a . (4.5)

for this class will also be finite and we are more specifically interested in any bounds on this number. The

automated scans described in the next section indicate that the answer is in the a�rmative, although it seems

di�cult to provide a general proof and derive a precise expression for the bound on N
gen

.

However, we would like to provide an analytical finiteness argument under the assumption that the slope

conditions (4.4) are satisfied in the physical part of Kähler moduli space (as discussed in the previous section).

First, we recall that the Kähler moduli space is equipped with a positive-definite metric [20]

Gij =
1

2vV
Z

X
Ji ^ ?Jj = �3

✓
ij


� 2ij

32

◆
, (4.6)

where i = dijk t
j tk and ij = dijk t

k. Due to the slope zero conditions (4.4), which can also be written as

ik
i
a = 0, we obtain

0 <
X

a

kT
aGka = � 3


dijk

X

a

kia k
j
a t

k =
6


ti c

2i(V )  6


ti c

2i(TX)  6


|t||c

2

(TX)| . (4.7)

7
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automated scans indicate that the class remains finite even without these restrictions on the Kähler moduli

space.

3 Kähler moduli space and low-energy coupling constants

For a supersymmetric line bundle sum, the slope zero conditions (2.3) must have a common solution in the

Kähler cone of the Calabi-Yau manifold X. However, from a physical point of view, the acceptable locus

in the Kähler cone is further restricted by the values of low-energy coupling constants and the requirement

that the supergravity approximation be consistent. We would like to discuss the interplay between those

physical restrictions in Kähler moduli space and the slope zero conditions. Unification of gauge couplings,

including the gravitational coupling, in the heterotic string is most naturally realised in the strong-coupling

limit [18], described by 11-dimensional Horava-Witten theory [19]. For this reason, we will be working in the

11-dimensional theory and measure all internal volumes using the relevant part of the 11-dimensional metric.

The 11-dimensional Newton constant 
11

and the 11-dimensional Planck length l are related by 4⇡
11

=

(2⇡l)9 and we also introduce the six-dimensional coordinate volume v = (2⇡l)6. The dimensionless Kähler

moduli ti and the triple intersection numbers are defined by

ti =
1

(2⇡l)2

Z

Ci

J , dijk =
1

v

Z

X
Ji ^ Jj ^ Jk , (3.1)

where J is the Kähler form associated to the 11-dimensional metric. Hence, the Kähler moduli ti measure the

volume of the holomorphic cycles Ci in units of the 11-dimensional Planck length. As usual, we introduce the

pre-potential

 = 6V = dijkt
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where V is the volume in units of the coordinate volume v, so that the physical volume is given by
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bound on line bundle sums:

(Constantin, Lukas, Mishra, 1509.02729)

ik
i
a = 0

Shows finiteness, provided we stay away from the Kahler cone boundaries.



Assume              where

x = A0 +A1h+ (A2 +A3h) log |c2(TX)|+ (A4 +A5h) log
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Asymptotic count of solutions goes with a power of the volume.
(Browning, Heath-Brown, Salberger, math/0410117)
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How seriously should this be taken?

Result for CICYs -           standard models - should be trusted.⇠ 1019

There are caveats extrapolating to              . h1,1 = 491

•  Low      data scattered, so probably large error at              .  
 (But there will still be              standard models.) 

h1,1 h1,1 = 491
10hundreds

•  There may be few discrete symmetries for CYs with large      . h1,1

•  There are other obstructions to a physical model. 

The Kreuzer-Skarke list contains only 16 cases with

toric symmetries, all of them for            . h1,1  7
(Batyrev, Kreuzer, math/0505432)

More general symmetries for Kreuzer-Skarke CYs have only been

explored for low      . h1,1

(Braun, Lukas, Sun, 1704.07812)
(Altman, Gay, He, Jejjala, Nelson, 1411.1418)



For example: Line bundle models on elliptically fibered CYs

                (with a toric base).

• The anomaly condition (3.7) is satisfied.

• Following Eq. (3.15), the index of the line bundle sum satisfies ind(V ) = �6. This guarantees
three chiral families of quarks and leptons after taking the quotient by the involution ◆X .

• The indices of La and La ⌦ Lb are constrained by Eqs. (3.16) to avoid a chiral asymmetry
with the wrong sign in any S(U(1)5) charge sector.

The number of models satisfying these conditions is given in the last column in Table 3. The list

base B k
max

k
mod

#models

F
2

10 – 0
F
4

10 – 0
F
7

10 4 54
F
9

7 6 22
F
13

3 3 � 46

F
(a)
15

3 3 � 236

F
(b)
15

3 3 � 84

total – – � 442

Table 3: The number of phenomenologically interesting models found for each of the six base
manifolds. The scan was carried out over all line bundle models with |kIa|  k

max

and k
mod

gives
the largest value of |kIa| which arises in a physically interesting model.

of all integer matrices K for those physically promising models can be downloaded from Ref. [23].
The number of models found for each base manifold B can be qualitatively understood by

considering the number h1,1
inv

(B)+1 (see Table 1 for the values of h1,1
inv

(B)) of independent integers

which specify a ◆X invariant line bundle. For B = F
2

, F
4

we have h1,1
inv

(B) = 2 and this does
evidently not provide enough freedom to allow for interesting models. For B = F

7

, F
9

we have
h1,1
inv

(B) = 3 and in these case we are able to find all physically promising models by extending

the scan to a su�ciently large k
max

. For the last two base spaces, B = F
13

, F
15

, with h1,1
inv

(B) = 4
the space of line bundle sums becomes quite large and we have only carried out a partial scan
for k

max

= 3. For those cases, the number of interesting models exceeds the numbers given in
Table (3). In total, we find 442 models for all six base manifolds.

For those 442 models, we have also determined the complete spectrum by computing all
relevant line bundle cohomologies, as explained in Section 3.2. The results of these computations
are summarised in Figs. 2, 3 and 4 which provide frequency plots for the number of 10 multiplets,
5 multiplets and singlets, respectively. As these plots show, there is unfortunately no model
without additional vector-like pairs. From Fig. 2, there exists always at least one 10–10 vector-like
pair and frequently many more. Fig. 3 shows that the situation is worse for 5–5̄ vector-like pairs,
where the minimal number is 20. This large number of vector-like pairs comes as a surprise, given
the experience with line bundle models on complete intersection CY three-folds [5, 6, 15] where
imposing the correct chiral asymmetry frequently resulted in the absence of additional vector-like
states.

As we have argued above, these vector-like states do not necessarily render the models un-
physical since they can be given a mass via couplings to singlet fields with non-vanishing vacuum
expectation values. Fig. 4 shows that our models do indeed have a significant number of such
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Number of physical models: 

but . . .

(Braun, Brodie, Lukas, 1706.07688)
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Figure 2: Frequency plot of h1(V ⇤) which gives the number of 10 multiplets, combined for all
base spaces.

singlet fields and it is likely that they can be used to remove unwanted vector-like pairs in many
cases. Analysing this is a matter of more detailed model building which is beyond the scope of
the present paper.

4.2 An example model

As an illustration, we will now present one of the physically interesting models from the pre-
vious sub-section in detail. Our example is for the base space B = F

7

= dP
3

which, follow-
ing Appendix B.3, has a basis of curve classes {Ci} = {l, E

1

, E
2

, E
3

} with dual basis {Ci} =
{l,�E

1

,�E
2

,�E
3

}. Line bundles will be represented relative to the basis {DI} = {D
0

, D
ˆ

0

, Di},
where

D
0

= �(B) , D
ˆ

0

= ⇣(B) , Di = ⇡�1(Ci) , i = 1, . . . , 4 . (4.1)

Writing La = OX(kIaDI) as before, the integer matrix K = (kIa) which defines our example is
given by

K =

0

BBBBBB@

�1 0 0 0 1
�1 0 0 0 1
1 0 0 0 �1

�1 1 1 1 �2
1 �1 �1 �1 2
1 0 0 0 �1

1

CCCCCCA
, (4.2)

with every column representing one of the line bundles La. First, we note that the columns sum
up to zero so that the constraint (3.3), c

1

(V ) ⇠ P
a ka = 0, is indeed satisfied. Further, we see

that the matrix is consistent with ◆X invariance of each line bundle. Specifically, the first and
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Figure 3: Frequency plot of h1(^2V ⇤) which gives the number of 5 multiplets, combined all base
space spaces.

second rows are identical, so that k0a = k
ˆ

0

a, and the last four rows satisfy k1a = k2a + k3a + k4a,
in accordance with Eq. (3.19).

Following the list of required properties in Section 4.1, we should next check that the slope of
all line bundles vanishes somewhere in the Kähler cone. Given the structure of the matrix (4.2)
it is su�cient to do this for the line bundles L

1

and L
2

whose slopes are explicitly given by

µX(L
1

) = �8t2
0

+ 8t
0

t
1

� 2t2
1

+ 2t2
2

� 4t
0

t
3

+ 2t2
3

�4t
0

t
4

+ 2t2
4

+ 8t
1

t
ˆ

0

� 4t
3

t
ˆ

0

� 4t
4

t
ˆ

0

� 8t2
ˆ

0

, (4.3)

µX(L
2

) = �2t
0

t
2

+ 2t
0

t
3

� 2t
2

t
ˆ

0

+ 2t
3

t
ˆ

0

. (4.4)

It can be verified that µX(L
1

) = µX(L
2

) = 0 for

t
0

=
5

8
, t

ˆ

0

=
5

8
, t

1

=
43

12
, t

2

= 1 , t
3

= 1 , t
4

=
19

12
. (4.5)

Comparison with Eq. (B.29) shows that this point it indeed in the interior of the Kähler cone of
X.

Next, we should verify the anomaly condition for this model. The second Chern class of the
bundle V is given by

c
2

(V ) = 18(F �N)� 2N + 10�(l)� 4�(E
1

)� 6�(E
3

) (4.6)

and comparing this with the second Chern class of the tangent bundle (2.40) gives

c
2

(X)� c
2

(V ) = 54(F �N) + 2N + 8�(l � E
1

) + 12�(l � E
2

) + 6�(l � E
3

) . (4.7)

Since F �N and N are e↵ective curves and, from Appendix B.3, l�Ea are e↵ective curves in dP
3

this class is indeed e↵ective. Hence, the anomaly can be cancelled by wrapping a five-brane on a
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Conclusion

•  Algorithms (e.g. to compute cohomology) too slow at large      .  
 (need better algorithms, machine learning?) 

h1,1

•  Size of model spaces increases exponentially with      , so  
 systematic search is not possible.  
 (need more sophisticated search methods, genetic algorithms?)

h1,1

•  Even on conservative estimates the number of models with the  
 MSSM spectrum amounts to more data than currently stored in total.  
 (need better discriminators than spectrum: coupling constants)

Thanks and good luck!


