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derived
features, X

Input
Features, X

Unknown 
Target/Truth 
values

Targets: y
The quantity you 
want to learn.

� = ŷx�val � yx�val

Expected Error on prediction If the validation data is not representative 
of the SS data, you can’t use machine 
learning (or any similar analysis!) to 
quantify how good the predictions will be 
on the science sample.

ytrain ⇡ ŷtrain = f(Xtrain)

Supervised Machine Learning Framework
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Photometric redshifts have been the test bed of machine learning applications in 
cosmology since the 1990’s, recently the latest ideas from ML been ported into 
cosmology (see BH on the arXiv).

Photometric redshifts for galaxies

An galaxy imaged with a large camera and 
a few broad bands. We have images like 
this for 500 Milllion objects. It is relatively 
“cheap” to obtain. We can measure the 
properties of these galaxies from these 
types of images.

To use these galaxies for 
science, we need accurate 
distance information.



image from 
http://www.astronomy.ohio-state.edu/~pogge/Ast162/Unit5/expand.html

Observationally, we see that galaxies further away from us are receding faster. This is 
due to the expansion of the Universe. The cosmological “redshifting” of the galaxy 
light, is similar to a doppler shift in frequency,  and allows us to estimate the distance 
to the galaxy.

Photometric redshifts for galaxies
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Photometric redshifts have been the test bed of machine learning applications in 
cosmology since the 1990’s, recently the latest ideas from ML been ported into 
cosmology (see BH on the arXiv).

Photometric redshifts for galaxies

Spec-z is very accurate but 
expensive and is only be 
obtained for a small subset of 
data.  

This corresponds to the truth 
values, redshift (distance) and 
object type “Star/Galaxy” 

A spectrograph has a high wavelength 
resolution, allowing the ID of absorption/ 
emission lines, each with a “fingerprint”. 
Compare to the wavelength of these 
fingerprints measured in the lab, and lambda 
shift = redshift.
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Photometric redshifts have been the test bed of machine learning applications in 
cosmology since the 1990’s, recently the latest ideas from ML been ported into 
cosmology (see BH on the arXiv).

Photometric redshifts for galaxies

We can use a spectrograph to 
determine the redshift “truth 
values” of a subsample,.

We can measure the properties of billions of 
galaxies from these types of images.

Use machine learning to approximate the mapping “f”: 
redshift = f(photometric properties of training sample) 
f(photometric properties of 3 billion galaxies) => photometric redshift 
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My Supervised Machine learning workflow

Examine the training / test / science sample data. 
Is the test data representative of the science sample data?

Feature generation.  
What has been used before, can we include it?

Feature pre-selection / feature importance 
Random Forests / M.I.N.T. (see He et al 2013)

Calibrate predictions 
Do ML “pdfs” have the statistical properties of pdfs.

Application: 
Apply calibrated predictions to “test” sample to estimate predictive power. 
Apply calibrated predictions to “science sample” use this for science analysis.

Training 
Use heaps of algorithms & randomly explore hyper-parameter space. 
Don’t have a favourite algorithm (mine is AdaBoost!). Use as benchmark.
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Source Extractor

Feature Extraction: Astrophysics example

Feature “extraction”, catalogue level data:
=> standard machine learning

Broad band photometric images are 
easy and cheap, but accurate 
distances are required to use these 
objects for science.



Deep learning using the galaxy image

Hoyle 2015

Using Deep Neural Networks (DNNs) with 
latest tricks from Computer science, e.g., 
Convolutional Neural Networks (ImageNet), 
Dropout, Maxout, applied to galaxy images 
to predict redshifts.



Deep learning using the galaxy image

Hoyle 2015

Using Deep Neural Networks (DNNs) with 
latest tricks from Computer science, e.g., 
Convolutional Neural Networks (ImageNet), 
Dropout, Maxout, applied to galaxy images 
to predict redshifts.

Use the full image, and “learn the 
features on the fly”. Beware that the 
features become difficult to interpret.



My Supervised Machine learning workflow

Examine the training / test / science sample data. 
Is the test data representative of the science sample data?

Feature generation.  
What has been used before, can we include it?

Feature pre-selection / feature importance 
Random Forests / M.I.N.T (see He et al 2013)

Calibrate predictions 
Do ML “pdfs” have the statistical properties of pdfs.

Application: 
Apply calibrated predictions to “test” sample to estimate predictive power. 
Apply calibrated predictions to “science sample” use this for science analysis.

Training 
Use heaps of algorithms & randomly explore hyper-parameter space. 
Don’t have a favourite algorithm (mine is AdaBoost!). Use as benchmark.



Unintelligent Feature generation

Use all features we can imagine! No pre selection (other than physically 
motivated pruning).

+ Linear combinations of features. 
    This is what a standard Feed Forward NN could learn. However NN’s don’t like 
uninformative features, or too many features.

+ PCA, kernel PCA
    This maximises the “information content” of the system. Add these to the 
feature list.

Feature generation

However many more input ‘features’ are available.  If we were really data driven, we’d 
go (a bit) crazy.

Intelligent feature generation

+ Any domain specific knowledge
— what is currently being used in the field, and can it be included as an additional 
input feature? This means (depending on the algorithm) that your predictions will 
now be at least as good as the current standard.
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Feature pre-selection
We are now swimming in ‘M’ input features. Most algorithms don’t work well with 
many 10’s or 100’s of input features. Which ’S’  of those ‘M’ features should we use?

Machine learning techniques determine which input features provide the most 
predictive power when estimating ‘targets’. These more-important features can then 
be used in the algorithms of choice.

Feature importance with Decision Trees/ Random Forests
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Feature importance applied to photo-z
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Feature importance applied to photo-z

� = zspec � zpredict

PSF mag/cols
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My Supervised Machine learning workflow

Examine the training / test / science sample data. 
Is the test data representative of the science sample data?

Feature generation.  
What has been used before, can we include it?

Feature pre-selection / feature importance 
Random Forests / M.I.N.T. (see He et al 2013)

Training 
Use heaps of algorithms & randomly explore hyper-parameter space. 
Don’t have a favourite algorithm (mine is AdaBoost!). Use as benchmark.

Calibrate predictions 
Do ML “pdfs” have the statistical properties of pdfs.

Application: 
Apply calibrated predictions to “test” sample to estimate predictive power. 
Apply calibrated predictions to “science sample” use this for science analysis.



ML codes produce (P)DFs “conditional” on the data and algorithm. We can 
normalise them. We often call them PDFs. I always call them “PDFs”.

There are statistical methods to test if a PDF behaves like a PDF. [Brier 1950, Dawid 
1984,  Bordolio et al 2009, Polsterer 2016, BH et al 2017 —photo-z setting]. 

Calibrating the machine’s predictions 



ML codes produce (P)DFs “conditional” on the data and algorithm. We can 
normalise them. We often call them PDFs. I always call them “PDFs”.

There are statistical methods to test if a PDF behaves like a PDF. [Brier 1950, Dawid 
1984,  Bordolio et al 2009, Polsterer 2016, BH et al 2017 —photo-z setting]. 

Calibrating the machine’s predictions 

Reframe the question: If the pdf is correct, the truth value for one object should be 
consistent with being a random draw from the pdf.  For an ensemble of objects we can 
measure the properties of the truth values w.r.t their pdfs. Probability Integral Transform 
(PIT).



Polsterer 1608.08016

For an ensemble of objects, does the distributions of CDF values evaluated at the 
truth values have the expected shape.

Calibrating the machine’s predictions 



Polsterer 1608.08016

For an ensemble of objects, does the distributions of CDF values evaluated at the 
truth values have the expected shape.

Calibrating the machine’s predictions 



Photometric redshift DFs -> PDFs

PIT [CDF value @ truth value]
BH et al: 1708.01532



How do some ReScaled PDFs look?
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Bonnet et al 1507.05909

Incomplete spectroscopic samples



Bonnet et al 1507.05909

Incomplete spectroscopic samples

This is just one of many problems 
that make the labelled data 
unrepresentative of the science 
sample data.
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Validating photo-z distribution in Y1 Dark Energy Survey

Photo-z predictions

Method 1:
Color-redshift mapping using 
30 band photo-z [cosmic variance]

Method 2: 
Estimation of dndz of a sample 
using the clustering technique 
(i.e, cross correlate with a sample 
of objects with known redshifts)  

Hoyle, Grün & DES et al 2017

and it’s uncertainty

 = <z_true> - <z-photz>



Overview

The supervised ML framework 

An introduction to photometric redshifts

My typical ML workflow

A common ML application:

Photometric redshifts

The biggest problem for ML in cosmology: 

Unrepresentative labelled data

Dealing with unrepresentative labelled data

Other common applications of ML

Recent, novel applications of ML

Conclusions 



Star Galaxy separation

In Y1 we face a similar problem as before 
labelled data is biased!

Given an image of the night sky, is an object a star in our galaxy, or a far away galaxy?
Improvement in star-galaxy classification leads to reduced errors in cosmological 
analysis e.g. DES SV analysis:

Moving towards higher order measurements of the predicted 
signal. e.g. does the number density of stars increase as one 
approaches the LMC / our Galaxy disk (Nacho Sevilla, BH, 
DES et al in prep)

Using a PCA method 
to select features



                                                 
Nacho Sevilla, BH, in prep.

Feature Importance Applied to Star-Gal Sep.
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False Positive Rate (FPR)
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DES Y1 data
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Convolutional Neural Networks
Galaxy Zoo: A massive program to train members of the public to visually inspect 1 
Million galaxies more than 50 times each
 

Willet et al 2013



Convolutional Neural Networks
Galaxy Zoo: A massive program to train members of the public to visually inspect 1 
Million galaxies more than 50 times each
 

Kaggle-contest: 
use ML to reproduce 
the classifications of 
humans.

Willet et al 2013https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge



Convolutional Neural Networks
Galaxy Zoo: A massive program to train members of the public to visually inspect 1 
Million galaxies more than 50 times each
 

First application of
Deep ML with 2d-
CovNets in 
Astrophysics 
(Dieleman et al 2015)

Kaggle-contest: 
use ML to reproduce 
the classifications of 
humans.

Willet et al 2013

Could apply results to 
the 100’s million of 
galaxies and repeat for 
new surveys

https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge



Extract centre of image 
=> the galaxy, 

rescaled to 45x45 pixels

Data augmentation 

Dropout/Max pooling

Combined many networks

37 GZ 
classes

http://benanne.github.io/2014/04/05/galaxy-zoo.html

CNNs for Galaxy Zoo

Dieleman et al 2015



CNNs for redshift estimates

*everything about biased label 
data is still a problem*

Inputs: galaxy image 
-> 
ImageNet architecture
->
Targets: spec-z
 

Compared performance with standard 
ML algorithms, and found parity.



Robert Lohmeyer Master thesis 2017

Supervisor BH

CNNs for Cosmic Microwave Background radiation

Is there information in the CMB that is 
not contained in Cls? E.g. Higher order 
moments, such as non-Gaussianities.



A random sample of CNN papers 
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Generative Adversarial Networks (GANs)
Generative:
Deep ML NN1: Input (random noise) vector -> output something / image

Adversarial:
Deep ML NN2: distinguish examples of training data examples from non-
training data, e.g. that obtained from NN1

Networks:
Deep ML Convolution Neural Networks. 

As training proceeds, NN1 generates more and more realistic “examples”     
from a random noise vector, and NN2 get better and better at 
distinguishing training data, from everything else, e.g that generated by 
NN1.

The problem with GANs:
Mode collapse. Difficult learning —> Wasserstein GAN.
https://arxiv.org/abs/1701.07875 

https://github.com/bobchennan/Wasserstein-GAN-Keras/blob/master/mnist_wacgan.py
https://raw.githubusercontent.com/farizrahman4u/keras-contrib/master/examples/
improved_wgan.py



GANs generate realisations of a Dark-Matter N-body sim. 
We want to estimate the covariance matrices for correlation functions analysis, e.g. 
for the Baryon Acoustic Oscillations. Currently we call a very expensive cosmological 
N-body code called Gadget many 100’s - 1000s of times. 



GANs generate realisations of a Dark-Matter N-body sim. 

In essence we try to replace the Nbody simulation code with a Deep 3-d CovNet trained 
using a GAN. 
Master thesis Julien Wolf 2018  (Supervisor BH)

We want to estimate the covariance matrices for correlation functions analysis, e.g. 
for the Baryon Acoustic Oscillations. Currently we call a very expensive cosmological 
N-body code called Gadget many 100’s - 1000s of times. 



Example of the type of data we want to 
generate (training data)

Examples of the GAN 
generated data

GANs generate realisations of a Dark-Matter N-body sim. 

Master thesis Julien Wolf 2018



GANs generate realisations of a Dark-Matter N-body sim. 

The covariance matrix of the 
correlation functions look 
reasonable

Master thesis Julien Wolf 2018
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Conclusions / Summary

Cosmology is in the realm of “big data”; 100’s millions/ billions of galaxies. 
A subset of objects have target values. Many possibilities of applying machine 
learning in new and interesting ways. 

My personal ML workflow.

Some cosmological analysis is in a state of crisis:
Unrepresentative labelled data means we need new ideas, and potentially 
new algorithms. 
Higher order measurements of predictions is one way to proceed. 

Cutting edge algorithms being implemented in astrophysics/cosmology Deep 
ML: CNNs / GANs. 

Shameless self-plug: benhoyle1212@gmail.com
I always have ML projects for dedicated students

I co-supervise PhD and Master students

mailto:benhoyle1212@gmail.com


What is Anomaly Detection?



Targets (Y): The things we will want to predict 
(dependent variables), and have been measured 

for a subset of data.
Training: Fitting (or learning) a function to the training 
data, which maps features to targets Y = f(X)

[Input] Features (X): — the input quantities (or 
independent variables), which are often easily 
measured for all data.

Validation data: The independent data used after training 
to check how the hyper-parameter choices have 

changed the predictive power. 

ML dictionary

Hyper-parameters: The tuning components of an 
algorithm, which modify its behaviour.

Training data: The data used to fit the algorithm

Test data: A final independent data sample with target 
values, used to measure predictive power after all 
hyper-parameters have been fixed.

Science sample: the data set without target values, 
that we want to make predictions on.



Deep machine learning
keras.io  http://caffe.berkeleyvision.org/ pylearn2 torch 

The ML overview cheat-sheet

http://keras.io
http://caffe.berkeleyvision.org/
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Convolution neural networks (>2006):Images: Cat or Dog? Fbook face recognition.
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Deep machine learning

Reinforcement learning: AlphaGo, PacMan  https://gym.openai.com/ 
Convolution neural networks (>2006):Images: Cat or Dog? Fbook face recognition.

Deep Recurrent neural networks: google translate, Shakespeare
http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 
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Deep machine learning

Standard machine learning

Reinforcement learning: AlphaGo, PacMan  https://gym.openai.com/ 
Convolution neural networks (>2006):Images: Cat or Dog? Fbook face recognition.

Random forests, neural networks (ala 1980-2005’s), support vector 
machines, K-means clustering, self organising maps

Deep Recurrent neural networks: google translate, Shakespeare
http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 

keras.io  http://caffe.berkeleyvision.org/ pylearn2 torch 

scikit-learn.org 

The ML overview cheat-sheet

http://karpathy.github.io/2016/05/31/rl/

https://gym.openai.com/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://keras.io
http://caffe.berkeleyvision.org/
http://scikit-learn.org


You have some subset of data that you know the “truth” values for.

Deep machine learning

Standard machine learning

Reinforcement learning: AlphaGo, PacMan  https://gym.openai.com/ 

Supervised machine learning

Convolution neural networks (>2006):Images: Cat or Dog? Fbook face recognition.

Random forests, neural networks (ala 1980-2005’s), support vector 
machines, K-means clustering, self organising maps

Deep Recurrent neural networks: google translate, Shakespeare
http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 

keras.io  http://caffe.berkeleyvision.org/ pylearn2 torch 

scikit-learn.org 

Regression  / Classification

The ML overview cheat-sheet

Regression: predict a floating point number. e.g. Galaxy redshifts.
Classification: prediction an integer. E.g. star/galaxy/quasar classfctn.

http://karpathy.github.io/2016/05/31/rl/

https://gym.openai.com/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://keras.io
http://caffe.berkeleyvision.org/
http://scikit-learn.org


You have some subset of data that you know the “truth” values for.

Deep machine learning

Standard machine learning

Reinforcement learning: AlphaGo, PacMan  https://gym.openai.com/ 

Supervised machine learning

Unsupervised machine learning

Convolution neural networks (>2006):Images: Cat or Dog? Fbook face recognition.

Random forests, neural networks (ala 1980-2005’s), support vector 
machines, K-means clustering, self organising maps

Data Clustering algorithms: How can you cluster your data into “like” 
objects
Anomalous data identification: Does any new data look very different 
from the data you already have. E.g., fraud detection.

Deep Recurrent neural networks: google translate, Shakespeare
http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 

keras.io  http://caffe.berkeleyvision.org/ pylearn2 torch 

scikit-learn.org 

You don’t have a subset of data that you know the “truth” values for  
[Or you don’t care].

Regression  / Classification

The ML overview cheat-sheet

Regression: predict a floating point number. e.g. Galaxy redshifts.
Classification: prediction an integer. E.g. star/galaxy/quasar classfctn.

http://karpathy.github.io/2016/05/31/rl/

https://gym.openai.com/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://keras.io
http://caffe.berkeleyvision.org/
http://scikit-learn.org


Overview

The supervised Machine Learning (ML) framework 

When to use the ML hammer 

An introduction to photometric redshifts

My typical ML workflow

A common ML application:

Photometric redshifts

The biggest problem for ML in cosmology: 

Unrepresentative labelled data

Dealing with unrepresentative labelled data

Other common applications of ML

Recent, novel applications of ML

Conclusions 



When we are in a “data poor” and “model rich” regime e.g. Correlation function 
analysis of Cosmic Microwave Background maps, we should not use ML, rather rely 
on the predictive model [s]. 

When/why is ML suited to astrophysics/ cosmology?



When *not* to use the ML hammer?
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When *not* to use the ML hammer?

If you have an accurate predictive model, you should use it if possible
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When we are in a “data poor” and “model rich” regime e.g. Correlation function analysis 
of Cosmic Microwave Background maps, we should not use ML, rather rely on the 
predictive model [s]. 

When we are in a “data rich” and “model poor” regime, and still want to approximate 
some unknown model y=f(x); we can use machine learning to learn (or fit) an arbitrarily 
complex model (e.g. non-functional curves) of the data. 

When/why is ML suited to astrophysics/ cosmology?



When we are in a “data poor” and “model rich” regime e.g. Correlation function analysis 
of Cosmic Microwave Background maps, we should not use ML, rather rely on the 
predictive model [s]. 

When we are in a “data rich” and “model poor” regime, and still want to approximate 
some unknown model y=f(x); we can use machine learning to learn (or fit) an arbitrarily 
complex model (e.g. non-functional curves) of the data. 

Cosmology is firmly in the data “rich” regime: 
1) SDSS has 100 million photometrically identified objects (stars/galaxies) and 3 million 
spectroscopic “truth” values, for e.g. redshift, and galaxy/ stellar type 

2) DES has 300 million objects with photometry, and ~400k objects with spectra 

3) Gaia has >1.2 billion sources [stellar maps of the Milky Way] 

4) Euclid with have 3 billion objects... 

When/why is ML suited to astrophysics/ cosmology?



When we are in a “data poor” and “model rich” regime e.g. Correlation function analysis 
of Cosmic Microwave Background maps, we should not use ML, rather rely on the 
predictive model [s]. 

When we are in a “data rich” and “model poor” regime, and still want to approximate 
some unknown model y=f(x); we can use machine learning to learn (or fit) an arbitrarily 
complex model (e.g. non-functional curves) of the data. 

Cosmology is firmly in the data “rich” regime, and often in the “model-poor” regime: 
1) The exact mapping between galaxies observed in long exposure photographs and 
their true distance (redshift) depends on stellar population physics, initial stellar mass 
functions, feedback from exploding stars and black holes, the dust in our galaxy,... 

2) Is an object found in photometric images a faint star in our galaxy, or a high redshift 
galaxy? 

When/why is ML suited to astrophysics/ cosmology?



Redshifting is tough!
We extract 1-d spectra from simulations (known redshift), added realistic noise. Ask 
observers to redshift the spectra, using their common analysis tools.

We cannot validate photo-z performance on data which is biased w.r.t the science sample



Feature pre-selection: MINT
Which features should I choose to feed into my algorithms?
https://arxiv.org/abs/1310.1659 

Feature pre-selection

We could give everything to a Random Forest + feature importance.
— Memory Limitations.
— Correlations between features ignored.
— Shape of the “test/science sample data” is ignored.

We are now swimming in ‘M’ input features. Most algorithms don’t work 
well with many 10’s or 100’s of input features. Which ’S’ of those ’M’ 
features should we use?

https://arxiv.org/abs/1310.1659
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Training data Test dataCross 
validation

Inputs: Easily 
measured or 
derived
Features, X

Input
Features, X

Targets: y
The quantity you 
want to learn.

(also Peng et al. 2005)

Explore all M! / (M-S)! combinations of features using a greedy search algorithm.
Choose S features, so that we maximise �S

Supervised Machine Learning Framework
RF feature 
importance

Relevant (RL)  
features

Redundant (RD)  
features



Feature pre-selection

We could give everything to a Random Forest 
— Correlations between features ignored.
— Shape of the “test input data” is ignored.

Mutual INformation based Transductive feature selection MINT
(He et al 2013)
 — Identify the set of ’S’ (out of ‘M’) features which have the largest combined 
correlation with the target (measured in the training data), and the smallest 
correlation with each other (as measured in the test data).

We are now swimming in ‘M’ input features. Most algorithms don’t work 
well with many 10’s or 100’s of input features. Which of those ’S’ 
generated features should we use?



Recent GAN applications
GANs to peer within a galaxy image: sub PSF properties of galaxies. Schawinski et 
al 2017 

GANs produce one realisation of what the input galaxy could look like. 
http://space.ml/supp/GalaxyGAN.html



Schawinski et al 2017 



Recent GAN applications

GANs to peer within a galaxy image: sub PSF properties of galaxies. Schawinski et 
al 2017 

GANs produce one realisation of what the input galaxy could look like. 
http://space.ml/supp/GalaxyGAN.html

Getting “labels” for the science sample data one cares about, is very challenging.

Again, move towards higher order measurements of the predicted signal:
    E.g. does gas predicted to exist in some part of the galaxy/disk give off radiation 
which can be observed in other bands?



GANs generate realisations of a Dark-Matter N-body sim. 

The covariance matrix of the 
abundances of masses look 
reasonable

Master thesis Julien Wolf 2018


