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Supervised Machine Learning Framework

Training data C_ros_s Science Sample data
validation
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Inputs: Easily

measured or Input

derived Features, X

features, X Unknown
Targets: y Target/Truth
The quantity you values

want to learn.
Ytrain ~ @train — f(Xt'ra,z'n) gSS’ — f(XSS)

E ted Error on brediction If the validation data is not representative
XPeCte or on predictio of the SS data, you can’t use machine

learning (or any similar analysis!) to

A — Yr—val — Yr—val quantify how good the predictions will be
on the science sample.
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Photometric redshifts for galaxies

Photometric redshifts have been the test bed of machine learning applications in

cosmology since the 1990’s, recently the latest ideas from ML been ported into
cosmology (see BH on the arXiv).

To use these galaxies for
science, we need accurate
distance information.

An galaxy imaged with a large camera and
a few broad bands. We have images like
this for 500 Milllion objects. It is relatively
“cheap” to obtain. We can measure the

properties of these galaxies from these
types of images.



Photometric redshifts for galaxies

Observationally, we see that galaxies further away from us are receding faster. This is
due to the expansion of the Universe. The cosmological “redshifting” of the galaxy
light, is similar to a doppler shift in frequency, and allows us to estimate the distance

to the galaxy. Hubbleis Data (1 929)
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Photometric redshifts for galaxies

Photometric redshifts have been the test bed of machine learning applications in
cosmology since the 1990’s, recently the latest ideas from ML been ported into
cosmology (see BH on the arXiv).

A spectrograph has a high wavelength
resolution, allowing the ID of absorption/
emission lines, each with a “fingerprint”.
Compare to the wavelength of these
fingerprints measured in the lab, and lambda
shift = redshift.
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Photometric redshifts for galaxies

Photometric redshifts have been the test bed of machine learning applications in
cosmology since the 1990’s, recently the latest ideas from ML been ported into
cosmology (see BH on the arXiv).

A spectrograph has a high wavelength
resolution, allowing the ID of absorption/
emission lines, each with a “fingerprint”.
Compare to the wavelength of these
fingerprints measured in the lab, and lambda
shift = redshift.

This corresponds to the truth
values, redshift (distance) and 0.2
object type “Star/Galaxy”
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Photometric redshifts have been the test bed of machine learning applications in
cosmology since the 1990’s, recently the latest ideas from ML been ported into
cosmology (see BH on the arXiv).

We can measure the properties of billions of
galaxies from these types of images.

Use machine learning to approximate the mapping “f”:
redshift = f(photometric properties of training sample)
f(photometric properties of 3 billion galaxies) => photometric redshift
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Photometric redshifts have been the test bed of machine learning applications in
cosmology since the 1990’s, recently the latest ideas from ML been ported into

cosmology (see BH on the arXiv).

We can measure the properties of billions of
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Photometric redshifts for galaxies

Photometric redshifts have been the test bed of machine learning applications in
cosmology since the 1990’s, recently the latest ideas from ML been ported into

cosmology (see BH on the arXiv).

We can measure the properties of billions of

galaxies from these types of images.
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Use machine learning to approximate the mapping “f”:
redshift = f(photometric properties of training sample)
f(photometric properties of 3 billion galaxies) => photometric redshift
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My Supervised Machine learning workflow

Examine the training / test / science sample data.
Is the test data representative of the science sample data?

Feature generation.
What has been used before, can we include it?

Feature pre-selection / feature importance
Random Forests / M.I.N.T. (see He et al 2013)

Training
Use heaps of algorithms & randomly explore hyper-parameter space.
Don’t have a favourite algorithm (mine is AdaBoost!). Use as benchmark.

Calibrate predictions
Do ML “pdfs” have the statistical properties of pdfs.

Application:
Apply calibrated predictions to “test” sample to estimate predictive power.
Apply calibrated predictions to “science sample” use this for science analysis.
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Feature Extraction: Astrophysics example

Broad band photometric images are
easy and cheap, but accurate
distances are required to use these
objects for science.

Feature “extraction”, catalogue level data:
=> standard machine learning

10]10BJ]1Xq 201N0S

Description Feature name

dered_u dered_g dered_r Profile fracDeV _u fracDeV _g fracDeV r
dered-i dered z fracDeV . fracDeV _z
psfMag_u psfMag_g psfMag_r
psfMag_i psfMag_z

fiberMag_u fiberMag_g fiberMag_r Ellipticity expAB.i expAB z
fiberMag_i fiberMag_z deVAB_u deVAB_g deVAB.r

deVAB_ deVAB_z

Magnitudes expAB_u expAB_g expAB.r

petroRad_u petroRad_g petroRad_r
petroRad_i petroRad _z
Radii expRad_-u expRad_g expRad_r
expRad-i expRad-z
deVRad_u deVRad_g deVRad.r
deVRad-i deVRad -z

quuugqgug
Means Stokes g-r ur g4 u-i
q-z u_z




Deep learning using the galaxy image

Using Deep Neural Networks (DNNs) with
latest tricks from Computer science, e.g.,
Convolutional Neural Networks (ImageNet),
Dropout, Maxout, applied to galaxy images
to predict redshifts.
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Deep learning using the galaxy image

Using Deep Neural Networks (DNNs) with
latest tricks from Computer science, e.g.,
Convolutional Neural Networks (ImageNet),
Dropout, Maxout, applied to galaxy images
to predict redshifts.
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My Supervised Machine learning workflow

Examine the training / test / science sample data.
Is the test data representative of the science sample data?

Feature generation.
What has been used before, can we include it?

Feature pre-selection / feature importance
Random Forests / M.I.N.T (see He et al 2013)

Training
Use heaps of algorithms & randomly explore hyper-parameter space.
Don’t have a favourite algorithm (mine is AdaBoost!). Use as benchmark.

Calibrate predictions
Do ML “pdfs” have the statistical properties of pdfs.

Application:
Apply calibrated predictions to “test” sample to estimate predictive power.
Apply calibrated predictions to “science sample” use this for science analysis.



Feature generation

However many more input ‘features’ are available. If we were really data driven, we’d
go (a bit) crazy.

Unintelligent Feature generation

Use all features we can imagine! No pre selection (other than physically
motivated pruning).

+ Linear combinations of features.
This is what a standard Feed Forward NN could learn. However NN’s don’t like

uninformative features, or too many features.

+ PCA, kernel PCA
This maximises the “information content” of the system. Add these to the

feature list.
Intelligent feature generation

+ Any domain specific knowledge
— what is currently being used in the field, and can it be included as an additional

input feature? This means (depending on the algorithm) that your predictions will
now be at least as good as the current standard.
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Feature pre-selection

We are now swimming in ‘M’ input features. Most algorithms don’t work well with
many 10’s or 100’s of input features. Which ’S’ of those ‘M’ features should we use?

Feature importance with Decision Trees/ Random Forests

Machine learning techniques determine which input features provide the most
predictive power when estimating ‘targets’. These more-important features can then
be used in the algorithms of choice.
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Gini criteria: Reduce the scatter of the target feature by sub dividing the input feature space. The more
slices in a feature dimension, which each time reduce the Gini index, the more that feature dimension has
predictive power. In practice this happens in a high dimensional hyper-cube.
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Feature importance applied to photo-z

arXiv:1410.4696 [pdf, other]
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Feature importance applied to photo-z

arXiv:1410.4696 [pdf, other]

Description Feature name Feature importance for machine learning redshifts applied to SDSS galaxies
Ben Hoyle, Markus Michael Rau, Roman Zitlau, Stella Seitz, Jochen Weller
dered_u dered.g dered.r Comments: 10 pages, 4 figures, updated to match version accepted in MNRAS
dered_i dered_z Subjects: Instrumentation and Methods for Astrophysics (astro-ph.IM); Cosmology and Nongalactic Astrophysics (astro-ph.CO)

psfMag_u psfMag_g psfMag_r

Magnitudes psfMag i psfMag z
fiberMag_u fiberMag_g fiberMag_r
fiberMag_i fiberMag_z
petroRad_-u petroRad_g petroRad.r
petroRad_i petroRad _z . . - .
Radii expRad1 expRad.g expRad.r A catalogue of photometric redshifts for the SDSS-DR9 galaxies
expRad i expRad z (Research Note)
deVRad.u deVRad_g deVRad.r
deVRad-i deVRad-z M. Brescial, S. Cavuoti!, G. Longoz, and V. De Stefano?
dered z-dered_i dered_z-dered r " a two hidden layer network, using a combination of the 4 SDSS F—_“-:
dered z-dered g dered z-dered.u colors (obtained from the SDSS psfMag) plus the pivot mag-
dered_‘l-dered_r dered_i-dered_g nitude ps fMag in the  band. This
dered_i-dered_u dered_r-dered_g . - — 0.023 ith
dered_r-dered-u dered_g-dered_u uncertau_lgy oro = U wiih a Vq a 0 a 0’
fiberMag_z-fiberMag_i fiberMag_z-fiberMag r ~ 3% 10™°yalow NMAD, and to a low 1
fiberMag_z-fiberMag._g fiberMag_z-fiberMag_u - ) - - 0T [
Colors fiberMag_i-fiberMag_r fiberMag_i-fiberMag_g
fiberMag_i-fiberMag_u fiberMag r-fiberMag.g - .
fiberMag_r-fiberMag-u fiberMag_g-fiberMag-u Input features u A z = 0 A z
psfMag_z-psfMag_i psfMag._z-psfMag.r "
psfMag_z-psfMag_g psfMag_z-psfMag_u
psfMag_i-psfMag_r psfMag_i-psfMag_g
psfMag_i-psfMag_u psfMag r-psfMag g PSF mag/ cols O 0 OO 1 - - O 07 5
psfMag_r-psfMag_u psfMag_g-psfMag_u _— o . o
Profile fracDeV _u fracDeV _g fracDeV r

fracDeV . fracDeV _z

expAB_u expAB_g expAB_r T0p1&2 O 000 1 :l:O 068
Ellipticity expAB. expAB._z . .

deVAB_u deVAB_g deVAB.r
deVAB.i deVAB z

Means Stokes G as T Standard&top1&2 - O . O OO 1 I 0 . 066

gz uz

Standard&top1&2&3 O . OOO 1 :l:O . 065

A = Zspec — “predict



My Supervised Machine learning workflow

Examine the training / test / science sample data.
Is the test data representative of the science sample data?

Feature generation.
What has been used before, can we include it?

Feature pre-selection / feature importance
Random Forests / M.I.N.T. (see He et al 2013)

Training
Use heaps of algorithms & randomly explore hyper-parameter space.
Don’t have a favourite algorithm (mine is AdaBoost!). Use as benchmark.

Calibrate predictions
Do ML “pdfs” have the statistical properties of pdfs.

Application:
Apply calibrated predictions to “test” sample to estimate predictive power.
Apply calibrated predictions to “science sample” use this for science analysis.



Calibrating the machine’s predictions

ML codes produce (P)DFs “conditional” on the data and algorithm. We can
normalise them. We often call them PDFs. | always call them “PDFs”.

There are statistical methods to test if a PDF behaves like a PDF. [Brier 1950, Dawid
1984, Bordolio et al 2009, Polsterer 2016, BH et al 2017 —photo-z setting].



Calibrating the machine’s predictions

ML codes produce (P)DFs “conditional” on the data and algorithm. We can
normalise them. We often call them PDFs. | always call them “PDFs”.

There are statistical methods to test if a PDF behaves like a PDF. [Brier 1950, Dawid
1984, Bordolio et al 2009, Polsterer 2016, BH et al 2017 —photo-z setting].

Reframe the question: If the pdf is correct, the truth value for one object should be
consistent with being a random draw from the pdf. For an ensemble of objects we can
measure the properties of the truth values w.r.t their pdfs. Probability Integral Transform
(PIT).
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Calibrating the machine’s predictions
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For an ensemble of objects, does the distributions of CDF values evaluated at the
truth values have the expected shape.

a.) underdispersed b.) overdispersed c.) biased d.) well calibrated
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Figure 3. Four different probability integral transforms (PIT's). In the case of underdispersed PDF's an u-shaped, concave distribution
is observed (a). Overdispersed PDF's result in a peaked, convex distribution (b). When a slope in the PIT is observed, the analysed
PDF's are biased (c). Only when the PIT exhibits a flat distribution, the PDF's are well calibrated (d). Polsterer 1608.08016



Calibrating the machine’s predictions

=)
=
[=}

24 g,
T, 9
a D:0.4
g’ 5
’ 8.0 0.2 . 0.4 0.6 0.8 1.0 ‘ 0'8.0 0.2 I 0.4 0.6 0.8 1.0
redshift redshift
For an ensemble of objects, does the distributions of CDF values evaluated at the
truth values have the expected shape.
a.) underdispersed b.) overdispersed c.) biased d.) well calibrated
ol B Hpipl . > o I W e oE
5 5 3 5 } 5
Sl = mm s omm sl S| s [ESCUR (e ﬁ_ m S e am = om om | D
¢ N E i g

00 02 04 06 0.8 10 00 02 04 06 0.8 10 00 02 04 06 0.8 10 00 02 04 06 0.8 1.0
probability integral transform probability integral transform probability integral transform probability integral transform

Figure 3. Four different probability integral transforms (PIT's). In the case of underdispersed PDF's an u-shaped, concave distribution
is observed (a). Overdispersed PDF's result in a peaked, convex distribution (b). When a slope in the PIT is observed, the analysed
PDF's are biased (c). Only when the PIT exhibits a flat distribution, the PDF's are well calibrated (d). Polsterer 1608.08016



Photometric redshift DFs -> PDFs
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How do some ReScaled PDFs look?

10

DF orig
PDF rescaled

8o 05 T.0 15 20 25 30

Redshift

3.5 4.0




Overview

The supervised ML framework
An introduction to photometric redshifts
My typical ML workflow
A common ML application:
Photometric redshifts
The biggest problem for ML in cosmology:
Unrepresentative labelled data
Dealing with unrepresentative labelled data
Other common applications of ML
Recent, novel applications of ML

Conclusions



Incomplete spectroscopic samples

1.5 !
(7))
% 0.8 g
= -
D
o
1.0 Q
0.6 CEL
ce S
| O
~ Q.
05 i O 0.4 %
QO
V)
QO
0.0 02>
>

O
| .

0.0

Figure 7. Spectroscopic completeness of the VVDS Deep sample
in g—1r vs r—1 colour space. Each point represents the centre of a
4-D colour-magnitude k-means cell containing a similar number
of galaxies from the DES SV NGMIX catalogue. The size of the
point represents the number of targeted objects, while the colour
indicates the fraction that returned a reliable redshift. The three
magnitude ranges (as labelled) cover the i-band magnitude range
that contains the majority of galaxies in the weak lensing sample
— see Fig. 1 for the distribution in the catalogues. Bonnet et al 1507.05909
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i This is just one of many problems  }
{that make the labelled data |
f unrepresentative of the science
t sample data.

Figure 7. Sperscic cometens of the VVDS Deep sample
in g—1r vs r—1 colour space. Each point represents the centre of a
4-D colour-magnitude k-means cell containing a similar number
of galaxies from the DES SV NGMIX catalogue. The size of the
point represents the number of targeted objects, while the colour
indicates the fraction that returned a reliable redshift. The three
magnitude ranges (as labelled) cover the i-band magnitude range
that contains the majority of galaxies in the weak lensing sample
— see Fig. 1 for the distribution in the catalogues. Bonnet et al 1507.05909
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Validating photo-z distribution in Y1 Dark Energy Survey

Value

Bin 1 Bin 2 Bin 3 Bin 4

PZ

z" % range

COSMOS final Az*, tomographic uncertainty

WZ final Az*
Combined final Az*

0.20-0.43 0.43-0.63 0.63-0.90 0.90-1.30

+0.001 +0.020 —0.014 +=0.021 +0.008 £ 0.018 —0.057 & 0.022
+0.008 +0.026 —0.031 +=0.017 —0.010 40.014

+0004£00  /\  and it’s uncertainty 022

-~ BPZ DESY]
— COSMOS «__

A ,=<z_true> - <z-photz>
- Photo-z predictions

\ Method 1:

Color-redshift mapping using
30 band photo-z [cosmic variance]

Method 2:

Estimation of dndz of a sample
using the clustering technique
(i.e, cross correlate with a sample
of objects with known redshifts)

0 02 04 06 0.8
Redshift

1.0

Hoyle, Grin & DES et al 2017
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Star Galaxy separation

Given an image of the night sky, is an object a star in our galaxy, or a far away galaxy?
Improvement in star-galaxy classification leads to reduced errors in cosmological
analysis e.g. DES SV analysis:

purity at 96% completeness, for galaxies

T Iwo T T S - : ‘:
0.2 5/ 1 | — systematic error Afuwy : oo G o ga® g el
Ol:/& | | — statistical error ofwy] 0 | - : e
0.0 £ f,=0.0197 | ... threshold on f. ’ 3
P _ Afuo] <oy 3 ‘
- w olw o |
—02_ | J—: I ] a 01 =7
O 1 2 3 4 2 .
Fraction of Stellar ¥ le—2 Soumagnac et al 2015 3 @
contamination S

Using a PCA method 3-
to select features

g 4=~ multi_class
new method not including spread_model
. . - d_model (i band) ~
In Y1 we face a similar problem as before o | o dlass. star (band) , 4
labelled data is biased! 19 20 21 22 23

magnitude

Moving towards higher order measurements of the predicted
signal. e.g. does the number density of stars increase as one
approaches the LMC / our Galaxy disk (Nacho Sevilla, BH,
DES et al in prep)



Feature Importance Applied to Star-Gal Sep.
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Convolutional Neural Networks

Galaxy Zoo: A massive program to train members of the public to visually inspect 1
Million galaxies more than 50 times each

Is the galaxy simply smooth and rounded,
with no sign of a disk?

Could this be a dnsk viewed edge-on?

'

How rounded is it?

n n = l Is there a sign of a bar feature through

Does the galaxy have a bulge at its centre? the centre of the galaxy?
If so, what shape?

— -
| Is there any sign of a spiral

How tightly wound do the spiral arms appear? srm patterni
Is the odd feature a ring, or is the
galaxy disturbed or irregular?

Figure 1. Flowchart of the classification tasks for GZ2, beginning at the top centre. Tasks are colour-coded by their relative depths in
the decision tree. Tasks outlined in brown are asked of every galaxy. Tasks outlined in green, blue, and purple are {respectively) one, two
or three steps below branching points in the decision tree. 'l‘able@ describes the responses that correspond to the icons in this diagram.

Willet et al 2013

How many spixx arms are there? How prommenl is the central bulge,
D compared to the rest of the galaxy?




Convolutional Neural Networks

Galaxy Zoo: A massive program to train members of the public to visually inspect 1
Million galaxies more than 50 times each

Is the galaxy simply smooth and rounded,
with no sign of a disk?

Could this be a disk viewed edge-on?

Kaggle-contest: I
use ML to reproduce How rounded is it?
the classifications of
humans.

Is there a sign of a bar feature through
1 Does the galaxy have a bulge at its centre? the centre of the galaxy?

If so, what shape?

Is there anything odd?

»y | ¥ |

| Is there any sign of a spiral
arm pattern?

How tightly wound do the spiral arms appear?
Is the odd feature a ring, or is the @ 6 6
galaxy disturbed or irregular?
Y \ v
O How many spiral arms are there? How prominent is the central bulge,
compared to the rest of the galaxy?

Figure 1. Flowchart of the classification tasks for GZ2, beginning at the top centre. Tasks are colour-coded by their relative depths in
the decision tree. Tasks outlined in brown are asked of every galaxy. Tasks outlined in green, blue, and purple are {respectively) one, two
or three steps below branching points in the decision tree. 'l‘ab]c@ describes the responses that correspond to the icons in this diagram.

https:/www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge Willet et al 2013




Convolutional Neural Networks

Galaxy Zoo: A massive program to train members of the public to visually inspect 1
Million galaxies more than 50 times each

Is the galaxy simply smooth and rounded,
with no sign of a disk?

v
ould this be a disk viewed edge-on?

Kaggle-contest: I i :
use ML to reproduce How rounded is it?
the classifications of |
h umans. l Is there a sign of a bar feature through

Does the galaxy have a bulge at its centre? the centre of the galaxy?

l l * If so, what shape?

Is there anything odd? - & ~
Could apply results to vy | ¥ | ®| '®
L
|

the 100’s million of
galaxies and repeat for

How tightly wound do the spiral arms appear? . arm pattern?
new surveys
Is the odd feature a ring, or is the @ 9 6
galaxy disturbed or irregular?

/O How many spir.x arms are there? How prominent is the central bulge,
FirSt application Of | | compared to the rest of the galaxy?
Deep ML with 2d- -
CovNets in .

Astrophysics

(Dieleman et al 2015) n

Figure 1. Flowchart of the classification tasks for GZ2, beginning at the top centre. Tasks are colour-coded by their relative depths in
the decision tree. Tasks outlined in brown are asked of every galaxy. Tasks outlined in green, blue, and purple are {respectively) one, two
or three steps below branching peints in the decision tree. 'I‘ab]c@ describes the responses that correspond to the icons in this diagram.

https:/www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge Willet et al 2013

Is there any sign of a spiral




CNNs for Galaxy Zoo

Extract centre of image

=> the galaxy,
rescaled to 45x45 pixels
Data augmentation

Dropout/Max pooling

Combined many networks

45 \
40 S Dieleman et al 2015
16
N 6
{ Btk S 4
6\~ 5 < . Max classes
6 128 pooling
16 Ma’l‘_ 128 = 2x2
pooling 3 3
Max Bs = 8x8 T —
40
45 pooling T —
| 32 =20x20 v — 37
3 (RGB)
l | —
X16 2048 2048

maxout(2) maxout(2)

http://benanne.github.io/2014/04/05/galaxy-zoo.html



. arXiv:1504.07255 [pdf, other]

CNNs for redshift estimates

Measuring photometric redshifts using galaxy images and Deep Neural Networks

Ben Hoyle

Inputs: galaxy image

->

ImageNet architecture

->

Targets: spec-z

*everything about biased label

data is still a problem*

Compared performance with standard

T,
A

ML algorithms, and found parity.

21 <z< 2l 20 <2< 23| 23 < 2 < Zjy1 |Zn—1 < 2 < 2y

MLA H 068 095 IA /(1 + zspec)l > 0.15
DNNs 0.00 0.030 | 0.10 1.71%
AdaBoost | —0.001 | 0.030 | 0.10 1.56%

A = “spec — <“predict



CNNs for Cosmic Microwave Background radiation
Measuring Cosmological Parameters

Is there information in the CMB that is
not contained in Cls? E.g. Higher order
moments, such as non-Gaussianities.

Power Spectrum
Cosmology

{'A_s': 2.3e-09,
'h': 0.7,
'n_s': 0.95,
'omega_b': 0.02,
'omega_cdm': 0.25,
"output':

"tCl'}

from Simulated CMB Images with

Convolutional Neural Networks

2D CNN Configuration

1D CNN Configuration

input (128 x 128)

Conv2D (3 x 3) - 16
Conv2D (3 x 3) - 16

input (16384)

maxpool (2 x 2)

Conv2D (3 x 3) - 32
Conv2D (3 x 3) - 32

ConvlD (4, Stride 4) - 128

ConvlD (4, Stride4) - 128

maxpool (2 x 2)

maxpool (4)

Conv2D (3 x 3) - 64

2D Image Conv2D (3 x 3) - 64 ConvlD (4, Stride 4) - 256
e A maxpool (2 x 2)
Bisaran Conv2D (3 x 3) - 128 Conv1D (4, Stride 4) - 256
i SRR Conv2D (3 x 3) - 128
Ry :'* maxpool (2 x 2) maxpool (4)
i SRSy FC - 256 FC - 256
L FC - 128 FC - 128
N FC-1/FC-2 FC-1/FC-2
e —
AA;, | AQcpum | AASTE
PolSpice correlation function || 1.45-1071% | 0.025 3.3-107H1
10 ~11
ig SEE 1'2? : 13—10 g'gzzz 1 '_10 Robert Lohmeyer Master thesis 2017




A random sample of CNN papers

Spectral classification using convolutional neural networks
https://arxiv.org» cs v
by P Hala - 2014 - Cited by 2 - Related articles

Dec 29, 2014 - This thesis is about training a convolutional neural network (ConvNet) to ... neural
networks and deep learning methods in astrophysics.

"W Fast Automated Analysis of Strong Gravitational Lenses with
Convolutional Neural Networks

Yashar D. Hezaveh, Laurence Perreault Levasseur, Philip J. Marshall

-arXiv:1704.02744 [pdf, other]

Finding strong lenses in CFHTLS using convolutional neural networks

Colin Jacobs, Karl Glazebrook, Thomas Collett, Anupreeta More, Christopher McCarthy
Comments: 16 pages, 8 figures. Accepted by MNRAS

Subjects: Instrumentation and Methods for Astrophysics (astro-ph.IM); Astrophysics of Galaxies (astro-j

A Convolutional Neural Network For Cosmic String Detection in CMB
Temperature Maps

Razvan Ciuca, Oscar F. Hernandez, Michael Wolman
(Submitted on 29 Aug 2017)
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Generative Adversarial Networks (GANSs)

Generative:
Deep ML NN1: Input (random noise) vector -> output something / image

Adversarial:
Deep ML NN2: distinguish examples of training data examples from non-
training data, e.g. that obtained from NN1

Networks:
Deep ML Convolution Neural Networks.

As training proceeds, NN1 generates more and more realistic “examples”
from a random noise vector, and NN2 get better and better at
distinguishing training data, from everything else, e.g that generated by
NN1.

The problem with GANSs:
Mode collapse. Difficult learning —> Wasserstein GAN.
https:/arxiv.org/abs/1701.07875

https://github.com/bobchennan/Wasserstein-GAN-Keras/blob/master/mnist_wacgan.py
https://raw.githubusercontent.com/farizrahman4u/keras-contrib/master/examples/
improved wgan.py




GANSs generate realisations of a Dark-Matter N-body sim.

We want to estimate the covariance matrices for correlation functions analysis, e.g.
for the Baryon Acoustic Oscillations. Currently we call a very expensive cosmological
N-body code called Gadget many 100’s - 1000s of times.

100 A Mpc




GANSs generate realisations of a Dark-Matter N-body sim.

We want to estimate the covariance matrices for correlation functions analysis, e.g.
for the Baryon Acoustic Oscillations. Currently we call a very expensive cosmological
N-body code called Gadget many 100’s - 1000s of times.
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FIGURE 4.4: 3D representation of a randomly selected training exam-
ple. The color gradient corresponds to the mass scale represented by
the color bar in units of [h~! Mpc].

In essence we try to replace the Nbody simulation code with a Deep 3-d CovNet trained
using a GAN.
Master thesis Julien Wolf 2018 (Supervisor BH)




GANSs generate realisations of a Dark-Matter N-body sim.

Example of the type of data we want to
generate (training data)

Mass scale X
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X 000 Y
FIGURE 4.4: 3D representation of a randomly selected tra
ple. The color gradient corresponds to the mass scale reg 1280
the color bar in units of [h ! Mpc]|.
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Master thesis Julien Wolf 2018



GANSs generate realisations of a Dark-Matter N-body sim.
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Conclusions / Summary

Cosmology is in the realm of “big data”; 100’s millions/ billions of galaxies.

A subset of objects have target values. Many possibilities of applying machine
learning in new and interesting ways.

My personal ML workflow.

Some cosmological analysis is in a state of crisis:

Unrepresentative labelled data means we need new ideas, and potentially
new algorithms.

Higher order measurements of predictions is one way to proceed.

Cutting edge algorithms being implemented in astrophysics/cosmology Deep
ML: CNNs / GANSs.

Shameless self-plug: benhoyle1212@gmail.com
| always have ML projects for dedicated students
| co-supervise PhD and Master students
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What is Anomaly Detection?

ANOMmALY

- e -

Clustering

VALVE

« Find areas dansae with data

(canversaly, areas withou! data)

T ME « Anomaly = lar from any custer
I « Unsupervised leaming

« Supervise wih labets 1o
improve, inlarprel

Scholarly articles for anomaly detection astrophysics
Detection of non-gaussianity in the Wilkinson ... - Vielva - Cited by 501
Anomaly detection and diagnosis algorithms for ... - Budalakoti - Cited by 104
Detection of a spectroscopic transit by the planet ... - Queloz - Cited by 341

Finding Anomalous Periodic Time Series: An Application to Catalogs ...
https://arxiv.org> cs ¥

by U Rebbapragada - 2009 - Cited by 72 - Related articles

May 21, 2009 - We compare our method to naive solutions and existing time series anomaly detection
methods for unphased data, and show that PCAD's reported anomalies are comparable to or better than
all other methods. Finally, astrophysicists on our team have verified that PCAD finds true anomalies
that might be ...

" Anomaly detection for machine learning redshifts applied to SDSS ...
& https://arxiv.org » astro-ph ~

. by B Hoyle - 2015 - Cited by 7 - Related articles

} Mar 27, 2015 - Astrophysics > Cosmology and Nongalactic Astrophysics ... Anomaly detection
" allows the removal of poor training examples, which can adversely influence redshift estimates.

£ Anomalous training examples may be photometric galaxies with incorrect spectroscopic redshifts, or

k. galaxies with one or more ...

Finding anomalous periodic time series | SpringerLink
https://link.springer.com/article/10.1007/s10994-008-5093-3 v

by U Rebbapragada - 2009 - Cited by 72 - Related articles

Catalogs of periodic variable stars contain large numbers of periodic light-curves (photometric time
series data from the astrophysics domain). Separating anomalous objects from well-known classes is
an important step towards the discovery of new classes of astronomical objects. Most anomaly
detection methods for time ...
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ML dictionary

[Input] Features (X): — the input quantities (or
independent variables), which are often easily

measured for all data.
Targets (Y): The things we will want to predict

(dependent variables), and have been measured
for a subset of data.
Training: Fitting (or learning) a function to the training
data, which maps features to targets Y = f(X)

Hyper-parameters: The tuning components of an
algorithm, which modify its behaviour.

Training data: The data used to fit the algorithm

Validation data: The independent data used after training
to check how the hyper-parameter choices have
changed the predictive power.

Test data: A final independent data sample with target
values, used to measure predictive power after all
hyper-parameters have been fixed.

Science sample: the data set without target values,
that we want to make predictions on.



Deep machine learning The ML overview cheat-sheet
keras.io http://caffe.berkeleyvision.org/ pylearn2 torch
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Standard machine learning scikit-learn.org

Random forests, neural networks (ala 1980-2005’s), support vector
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Supervised machine learning
You have some subset of data that you know the “truth” values for.
Regression / Classification

Regression: predict a floating point number. e.g. Galaxy redshifts.
Classification: prediction an integer. E.g. star/galaxy/quasar classfctn.
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Deep machine learning The ML overview cheat-sheet
keras.io http://caffe.berkeleyvision.org/ pylearn2 torch

Convolution neural networks (>2006):Images: Cat or Dog? Fbook face recognition.

Reinforcement learning: AlphaGo, PacMan https:/gym.openai.com/
http://karpathy.github.io/2016/05/31/rl/

Deep Recurrent neural networks: google translate, Shakespeare

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Standard machine learning scikit-learn.org

Random forests, neural networks (ala 1980-2005’s), support vector
machines, K-means clustering, self organising maps

Supervised machine learning
You have some subset of data that you know the “truth” values for.

Regression / Classification
Regression: predict a floating point number. e.g. Galaxy redshifts.

Classification: prediction an integer. E.g. star/galaxy/quasar classfctn.

Unsupervised machine learning
You don’t have a subset of data that you know the “truth” values for

[Or you don’t carel.
Data Clustering algorithms: How can you cluster your data into “like”

objects
Anomalous data identification: Does any new data look very different

from the data you already have. E.g., fraud detection.
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Overview

The supervised Machine Learning (ML) framework
When to use the ML hammer
An introduction to photometric redshifts
My typical ML workflow
A common ML application:
Photometric redshifts
The biggest problem for ML in cosmology:
Unrepresentative labelled data
Dealing with unrepresentative labelled data
Other common applications of ML
Recent, novel applications of ML

Conclusions



When/why is ML suited to astrophysics/ cosmology?

When we are in a “data poor” and “model rich” regime e.g. Correlation function
analysis of Cosmic Microwave Background maps, we should not use ML, rather rely
on the predictive model [s].
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If you have an accurate predictive model, you should use it if possible




When/why is ML suited to astrophysics/ cosmology?

When we are in a “data poor” and “model rich” regime e.g. Correlation function analysis
of Cosmic Microwave Background maps, we should not use ML, rather rely on the
predictive model [s].

When we are in a “data rich” and “model poor” regime, and still want to approximate
some unknown model y=f(x); we can use machine learning to learn (or fit) an arbitrarily
complex model (e.g. non-functional curves) of the data.



When/why is ML suited to astrophysics/ cosmology?

When we are in a “data poor” and “model rich” regime e.g. Correlation function analysis
of Cosmic Microwave Background maps, we should not use ML, rather rely on the
predictive model [s].

When we are in a “data rich” and “model poor” regime, and still want to approximate
some unknown model y=f(x); we can use machine learning to learn (or fit) an arbitrarily
complex model (e.g. non-functional curves) of the data.

Cosmology is firmly in the data “rich” regime:
1) SDSS has 100 million photometrically identified objects (stars/galaxies) and 3 million
spectroscopic “truth” values, for e.g. redshift, and galaxy/ stellar type

2) DES has 300 million objects with photometry, and ~400k objects with spectra
3) Gaia has >1.2 billion sources [stellar maps of the Milky Way]

4) Euclid with have 3 billion objects...



When/why is ML suited to astrophysics/ cosmology?

When we are in a “data poor” and “model rich” regime e.g. Correlation function analysis
of Cosmic Microwave Background maps, we should not use ML, rather rely on the
predictive model [s].

When we are in a “data rich” and “model poor” regime, and still want to approximate
some unknown model y=f(x); we can use machine learning to learn (or fit) an arbitrarily
complex model (e.g. non-functional curves) of the data.

Cosmology is firmly in the data “rich” regime, and often in the “model-poor” regime:
1) The exact mapping between galaxies observed in long exposure photographs and
their true distance (redshift) depends on stellar population physics, initial stellar mass
functions, feedback from exploding stars and black holes, the dust in our galaxy,...

2) Is an object found in photometric images a faint star in our galaxy, or a high redshift
galaxy?



Redshifting is tough!

We extract 1-d spectra from simulations (known redshift), added realistic noise. Ask
observers to redshift the spectra, using their common analysis tools.

Leads: Will Hartley, Chihway Chang
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We cannot validate photo-z performance on data which is biased w.r.t the science sample



Feature pre-selection

We are now swimming in ‘M’ input features. Most algorithms don’t work
well with many 10’s or 100’s of input features. Which ’S’ of those "M’
features should we use?

We could give everything to a Random Forest + feature importance.

— Memory Limitations.
— Correlations between features ignored.
— Shape of the “test/science sample data” is ignored.

Feature pre-selection: MINT
Which features should | choose to feed into my algorithms?
https:/arxiv.org/abs/1310.1659
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Supervised Machine Learning Framework

RF feature
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q)S (RL RD ) RL RD (also Peng et al. 2005)

Choose S features, so that we maximise @ ¢
Explore all M! / (M-S)! combinations of features using a greedy search algorithm.



Feature pre-selection

We are now swimming in ‘M’ input features. Most algorithms don’t work
well with many 10’s or 100’s of input features. Which of those ’S’
generated features should we use?

We could give everything to a Random Forest
— Correlations between features ignored.
— Shape of the “test input data” is ignored.

Mutual INformation based Transductive feature selection MINT

(He et al 2013)

— ldentify the set of ’S’ (out of ‘M’) features which have the largest combined
correlation with the target (measured in the training data), and the smallest
correlation with each other (as measured in the test data).
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Recent GAN applications

GANSs to peer within a galaxy image: sub PSF properties of galaxies. Schawinski et
al 2017

GANs produce one realisation of what the input galaxy could look like.
http:/space.ml/supp/GalaxyGAN.html

Data Prep. Training of GAN

Original Image Original Image

. . -.D'§9£I_ml_n?mr__
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Degraded Image Generator Recovered Image

Figure 1. Schematic illustration of the training process of our
method. The input is a set of original images. From these we
automatically generate degraded images, and train a Generative
Adversarial Network. In the testing phase, only the generator will
be used to recover images.



original degraded GAN recovered deconvolved

original degraded GAN recovered deconvolved

PSF=2.5", 100

Figure 2. We show the results obtained for one example galaxy. From left to right: the original SDSS image, the degraded image with a
worse PSF and higher noise level (indicating the PSF and noise level used), the image as recovered by the GAN, and for comparison, the
result of a deconvolution. This figure visually illustrates the GAN’s ability to recover features which conventional deconvolutions cannot.

Schawinski et al 2017
PeE=2 5" 1Bg . ®



Recent GAN applications

GANs to peer within a galaxy image: sub PSF properties of galaxies. Schawinski et
al 2017

GANSs produce one realisation of what the input galaxy could look like.
http://space.ml/supp/GalaxyGAN.html

Getting “labels” for the science sample data one cares about, is very challenging.

Again, move towards higher order measurements of the predicted signal:
E.g. does gas predicted to exist in some part of the galaxy/disk give off radiation
which can be observed in other bands?



GANSs generate realisations of a Dark-Matter N-body sim.
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