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Outline

A brief introduction to the Free Fermionic Formulation (FFF)

A definition of classification and it’s aims will be given

Previous results of classifications will be outlined

How machine learning has already been introduced to the FFF
will be briefly discussed

The current project will be outlined along with the plans of
how to introduce machine learning into the classification
process

The aim is then to (hopefully) generate a discussion with your
thoughts on the project and any considerations to be made

Conclusions



Introduction to Free Fermions

The free fermionic construction of string theory offers an
interesting way to test the phenomenology of various string
models
To date, the models constructed represent some of the most
realistic string models with three chiral generations of matter
In the free fermionic construction we interpret the extra
degrees of freedom as free fermions propagating on the string
worldsheet, instead of spacetime dimensions. This allows us to
formulate the theory directly in four spacetime dimensions
We do this by introducing:
Left moving cL = −26 + 11 +D + D

2 +NfL · 12 = 0
Right moving cR = −26 +D +NfR · 12 = 0
We can then see that to cancel the conformal anomaly, we
need:

NfL = 18

NfR = 44



Introduction to Free Fermions

The fermions on the worldsheet are



Partition Function

The partition function is the sum over all the massive and
massless string states which have to be included when the
string propagates around the vacuum to vacuum amplitude

The relevent information from the one loop fermionic partition
function we concern ourself with for model building is then∑

spin structures

C

(
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)
Z

(
~α
~β

)
This is what we consider in order to build our models



Basis Vectors

The complete partition function can be constructed by
specifying a set of basis vectors and the one loop phases.

Basis vectors denote whether each fermion has periodic,
antiperiodic or complex boundary conditions

We write these in the form

bi = {α(ψµ12) , . . . , α(w6) | α(ȳ1) , . . . , α(φ̄8)}

where α is the phase defined in f → −eiπα(f)f



Basis Vectors

The standard set of basis vectors used in this talk are the set
commonly found in the literature, which generate SO(10) models

v1 = 1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6|
y1,...,6, ω1,...,6, η1,2,3, ψ

1,...,5
, φ

1,...,8},
v2 = S = {ψµ, χ1,...,6},

v2+i = ei = {yi, ωi | yi, ωi}, i = 1, . . . , 6,

v9 = b1 = {χ34, χ56, y34, y56 | y34, y56, η1, ψ1,...,5}, (1)

v10 = b2 = {χ12, χ56, y12, y56 | y12, y56, η2, ψ1,...,5},
v11 = z1 = {φ1,...,4},
v12 = z2 = {φ5,...,8}.

where i = 1, . . . , 6 and the fermions which appear in the basis
vectors have periodic (Ramond) boundary conditions, where as
those not included have antiperiodic (Neveu-Schwarz) boundary
conditions.



Basis Vectors

Two notable linear combinations are given the definition x and b3
and are treated as basis vectors in their own right. They are
defined as

x = 1 + S +

6∑
i=1

ei + z1 + z2

b3 = b1 + b2 + x

= 1 + S +

6∑
i=1

ei + b1 + b2 + z1 + z2



GSO Projection

The equation for the Generalized GSO projection is

eiπbj ·Fα |s〉α = δα C

(
α

bj

)∗
|s〉α

where α is the sector being considered and bj is the basis
vector

The states |s〉 which satisfy this equation are ‘kept in’ and the
states which do not satisfy this equation are ‘projected out’.

By performing the GSO projection on sectors we can break
the gauge group and remove any unwanted states from the
spectrum



Observable Sectors

The chiral matter spectrum arises from the sectors B
(1,2,3)
pqrs which

are given by

B(1)
pqrs = S + b1 + pe3 + qe4 + re5 + se6

= {ψµ, χ1,2, (1− p)y3ȳ3, pw3w̄3, (1− q)y4ȳ4, qw4w̄4,

(1− r)y5ȳ5, rw5w̄5, (1− s)y6ȳ6, sw6w̄6, η̄1, ψ̄1,...,5}

B(2)
pqrs = S + b2 + pe1 + qe2 + re5 + se6

B(3)
pqrs = S + b3 + pe1 + qe2 + re3 + se4

where p, q, r, s = 0, 1.
The Standard Model Higgs states arise from the sectors

B
(1,2,3)
pqrs + x.



Projectors

Projectors are linear equations which select whether a sector gives
rise to states or projects the states out

The projectors associated with B
(1,2,3)
pqrs are denoted by P

(1,2,3)
pqrs and

are given by

P (1)
pqrs =

1

16

(
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))
·
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e2
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·
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1

16
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These projectors can be expressed as a system of linear equations
where p, q, r, s are unknowns. The solutions to the equations give
the combinations of p, q, r, s for which these sectors survive.



Classification

When moving to a computer based analysis, the following notation
can be introduced

C

(
bi
bj

)
= eiπ(bi|bj) where (bi|bj) = 0, 1,±1

2



Classification

Using the new notation defined on the previous slide, the

projectors P
(i)
pqrs, where i = 1, 2, 3, can be written (respectively) in

a matrix form ∆iW i = Y i
(e1|e3) (e1|e4) (e1|e5) (e1|e6)
(e2|e3) (e2|e4) (e2|e5) (e2|e6)
(z1|e3) (z1|e4) (z1|e5) (z1|e6)
(z2|e3) (z2|e4) (z2|e5) (z2|e6)



p
q
r
s

 =


(e1|b1)
(e2|b1)
(z1|b1)
(z2|b1)




(e3|e1) (e3|e2) (e3|e5) (e3|e6)
(e4|e1) (e4|e2) (e4|e5) (e4|e6)
(z1|e1) (z1|e2) (z1|e5) (z1|e6)
(z2|e1) (z2|e2) (z2|e5) (z2|e6)



p
q
r
s

 =


(e3|b2)
(e4|b2)
(z1|b2)
(z2|b2)




(e5|e1) (e5|e2) (e5|e3) (e5|e4)
(e6|e1) (e6|e2) (e6|e3) (e6|e4)
(z1|e1) (z1|e2) (z1|e3) (z1|e4)
(z2|e1) (z2|e2) (z2|e3) (z2|e4)



p
q
r
s

 =


(e5|b3)
(e6|b3)
(z1|b3)
(z2|b3)





These matrices are implemented by the code by a series of if
statements

If P
(1,2,3)
pqrs = 1 then the state survives and if P

(1,2,3)
pqrs = 0 then

the state is projected out

The 4× 4 matrix ∆i and the right hand side of the equation
Y i call to the GGSO projection coefficient matrix in order to
set the values in the brackets (bi|bj)
The code then runs through the 16 distinct possibilities for
p, q, r, s and records which combinations of p, q, r, s survive



Chirality Conditions

In a similar manner to the projectors, the chirality of the
surviving states are found

The GSO projections of each basis vector in the model is
imposed on the sector in order to find the string states which
survive and with what chirality

All possible states after GSO projecting on the sector are
currently calculated by hand and the phases of the GSO
projection are encoded using a ladder of if-else statements

I.e The if-else ladder performs the GSO projections by calling
to the relevent phases in the GGSO projection coefficient
matrix of the vacua



GGSO Projection Coefficients

An example of the GGSO projection coefficients for a Left-Right
Symmetric (LRS) model is

(bi|bj) =



1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2 α

1 1 1 1 1 0 1 0 0 0 1 1 1 1.5
S 1 1 1 1 1 1 1 1 1 1 1 1 1
e1 1 1 0 1 0 0 0 1 0 1 0 0 0
e2 1 1 1 0 0 0 0 1 0 1 0 1 0
e3 0 1 0 0 1 1 0 0 0 0 0 0 1
e4 1 1 0 0 1 0 0 0 1 0 0 0 0
e5 0 1 0 0 0 0 1 0 0 0 0 0 1
e6 0 1 1 1 0 0 0 1 0 1 1 1 1
b1 0 0 0 0 0 1 0 0 0 0 0 0 1
b2 1 0 1 1 0 0 0 1 0 1 0 0 0
z1 1 1 0 0 0 0 0 1 0 0 1 0 1
z2 1 1 0 1 0 0 0 1 0 0 0 1 0
α 1 1 0 0 1 0 1 1 0 1 0 1 1





Aims of Classification

The classification of a model then refers to finding vacua
consistent with our phenomenological constraints, such as

Three chiral generations of observable matter

N = 1 SUSY

No exotic states at the level of the Standard Model

No observable gauge group enhancements

Constraints on the number and type of Higgs particles in the
spectrum

The classification of the model then refers to enumerating the
number of vacua in the model consistent with these constraints



Previous Results - Pati-Salam Classification -
arXiv:1007.2268

Previous classifications have been performed for Pati-Salam
models

The models discussed here use the basis vectors shown
previously along with the basis vector

α =
{
ψ
4,5

, φ
1,2}



Previous Results - Pati-Salam Classification -
arXiv:1007.2268

Figure: Number of models versus number of generations in a random
sample of 1011 GGSO configurations



Previous Results - Pati-Salam Classification -
arXiv:1007.2268

Figure: Number of exotic free models versus the number of generations in
a random sample of 1011 GGSO configurations



Previous Results - Pati-Salam Classification -
arXiv:1007.2268

Figure: Number of 3-generation models versus the total number of exotic
multiplets in a random sample of 1011 GGSO configurations



Previous Results - Pati-Salam Classification -
arXiv:1007.2268

Figure: Pati-Salam models statistics with respect to phenomenological
constraints imposed on massless spectrum



Previous Results - FSU(5) Classification - arXiv:1403.4107

The flipped SU(5) models which have been classified used the
same basis vectors discussed previously along with the basis vector

α =
{
ψ
1,...,5

=
1

2
, η1,2,3 =

1

2
, φ

1,2,3,4
=

1

2
, φ

5}



Previous Results - FSU(5) Classification - arXiv:1403.4107

Figure: Logarithm of the number of models against the number of
generations in a random sample of 1012 flipped SU(5) configurations



Previous Results - FSU(5) Classification - arXiv:1403.4107

Figure: Logarithm of the number of exophobic models against the number
of generations in a random sample of 1012 flipped SU(5) configurations



Previous Results - FSU(5) Classification - arXiv:1403.4107

Figure: Statistics for the flipped SU(5) models with respect to
phenomenological constraints



Left-Right Symmetric

Currently, there is a classification running on a LRS model

This uses the basis vector

α =
{
ψ
1,2,3

=
1

2
, η1,2,3 =

1

2
, φ

1,...,6
=

1

2
, φ

7}
The sample size is 1× 1011 vacua

Models have been found which are not enhanced, 3
generation, have a light Standard Model and heavy Higgs, are
anomaly free and have a top quark mass coupling

So far, there have been no 3 generation exophobic vacua
found and it looks unlikely that this model will yield them

The results will be be presented in an upcoming publication



Previous Machine Learning Applications - arXiv:1404.7359

Genetic algorithms have already been applied to the Free
Fermionic Formulation by Steve Abel and John Rizos

In their paper they successfully showed that using genetic
algorithms makes searches for phenomenologically viable
vacua much more efficient

An example search for vacua with 3 generation exophobic
Pati-Salam models with a top Yukawa coupling was used

Conventionally, one of these models occurs in every 1010

scanned

Using a genetic algorithm one can be found in every 105,
which is drastically more efficient



Reinforcement Learning Project

The project to involve machine learning in the classification
analysis has begun

Currently a parallel code is being written to analyse the
observable sectors of a LRS model, meaning the number of
generations of a model can be calculated and the Higgs states
found

This code will be able to run to find 3 generation models with
a light and heavy Higgs which would compromise a training
set of data

The aim of the project is to adapt this code to use
reinforcement learning technqiues in order to find patterns in
the linear combinations of GGSO projection coefficients which
give rise to 3 generation models and / or Higgs particles



Reinforcement Learning Project

It has been found in previous cases that if certain linear
combinations of the GGSO projection coefficients are fixed
then ‘fertile regions’ of 3 generation models can be found

The idea is to use reinforcement learning to find what linear
combinations of GGSO projections lead to these fertile regions

Currently, the GGSO projection coefficients are set randomly
and the resulting models analysed by the code. Reinforcement
learning would be used to discover patterns in fixing the
GGSO projection coefficients which lead to
phenomenologically desirable results



Reinforcement Learning Project

The idea is to think of the GGSO projection matrix
analogously to a game board

The reward function would gain a positive value for leading to
models with phenomenologically desirable results (such as
being 3 generations or having a Higgs)

If the model has ‘bad’ phenomenology, such as not having
complete generations, then the reward function would take a
negative value

In this way, this reinforcement learning project can work
similarly to programs such as alphaGO

In the same way as alphaGO having a winning game and
therefore assigning a positive reward value to the board states
it used to get there, a GGSO projection matrix configuration
which leads to ‘good’ phenomenology would be assigned a
positive value and vice versa in a negative case



Conclusions

The Free Fermionic Formulation provides a robust framework
in which to study the phenomenological properties of string
vacua

Classifications of Pati-Salam and FSU(5) vacua have been
performed to find the statistics of the number of 3 generation
models, number of exotic multiplets and the number of
exophobic vacua

The classification of Left-Right Symmetric models will be
presented in a future publication

Previously, genetic algorithms have been applied to the FFF
with good results

The current work aims to use reinforcement learning to find
fertile regions of 3 generation models of LRS vacua



Thank you for listening

I welcome any input on ideas about how this can be achieved or
what limitations this method may have


