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OVERVIEW

How can we make predictions when the inflation model is not simple?

1. Computing observables from inflation models
Brief summary of publicly available codes

An information theoretic approach to making robust predictions

ol

Minimal working example: single field axion monodromy
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WHAT ABOUT WHEN THE MODEL IS NOT SO SIMPLE?

Single field models may require a numerical approach if

- Model has multiple parameters

 There are deviations from slow-roll when relevant scales exit
the horizon

Models with more than than one “active” field (multifield) typically
require numerics as dynamics are much richer

e.g.

- Sensitivity to initial conditions

 Super-horizon evolution of observables due to isocurvature
- Particle production

- Non-Gaussianity
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THE TRANSPORT METHOD
transportmethod.com

Solves ODEs for field and momenta correlation functions
Can handle models of the form
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Bispectrum video created by Sean Butchers. Power spectrum: Dias, JF, Seery: arXiv: 1502.03125



TOWARDS ROBUST PREDICTIONS DESPITE INCOMPLETE KNOWLEDGE

Motivating Example: Random Matrix Theory

Random matrices first introduced to physics by Eugene Wigner
He modelled the nuclei of heavy atoms

Postulated that the spacings between the lines in the spectrum of a heavy
atom nucleus should resemble the spacings between the eigenvalues of a
random matrix, and should depend only on the symmetry class of the
underlying evolution

Example:
Gaussian orthogonal ensemble

p(M)dM = p(M")dM’

M =O0O"MO

Can we find a general and systematic approach to testing for universality?

Mehta: Random Matrices


https://en.wikipedia.org/wiki/Eugene_Wigner
https://en.wikipedia.org/wiki/Eigenvalues
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A NETWORK PERSPECTIVE ON INFLATION
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Objective: Asses the sensitivity of observables to choice of priors for model parameters
(and hopefully identify hierarchies between the dependencies of the graph)

Steps:

1. lIdentify relevant scales (class of models)
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Objective: Asses the sensitivity of observables to choice of priors for model parameters
(and hopefully identify hierarchies between the dependencies of the graph)

Steps:

1. Identify relevant scales (class of models) o s gl
Model dependent but often one can
obtain order of magnitude estimates for
model parameters.

2. Learn the mapping from parameters to @ @
observables Ny I J

Use publicly available code to compute l
observables for large sample of model
parameters.

Use basic machine learning methods to
learn this mapping N —— P (k)




Objective: Asses the sensitivity of observables to choice of priors for model parameters
(and hopefully identify hierarchies between the dependencies of the graph)

Steps:

1. Identify relevant scales (class of models) o s gl
Model dependent but often one can
obtain order of magnitude estimates for
model parameters.

2. Learn the mapping from parameters to @ @
observables Ny I J

Use publicly available code to compute l
observables for large sample of model
parameters.

Use basic machine learning methods to )
learn this mapping N, —— P (k)
3. Study how predictions depend on prior choice

One approach is to use information
theory




MUTUAL INFORMATION

Measures the average information z conveys about y.
Symmetric, non-negative, reparameterisation independent.
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THE DATA PROCESSING THEOREM

Consider an ensemble W DR where w — d — r is a Markov chain
I(W;R) < I(W;D)

“data processing can only destroy information”

I(X;Y)=) ) pla,y)log
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MINIMAL WORKING EXAMPLE: AXION MONODROMY
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Simplifications:

- Only consider one observable

 Include controlled backreaction, and assume sufficient
inflation is always achieved

- Slow-roll initial conditions (but allow subsequent
dynamics to be non slow-roll)

- Assume instantaneous reheating
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See Baumann and McAllister “Inflation and String Theory” for a review



MINIMAL WORKING EXAMPLE: AXION MONODROMY

Steps:
1. ldentify relevant scales (class of models)
2. Learn the mapping from parameters

to observables

5 Y
3. Study how predictions change according l l
to prior choice Q @
p Current efforts relating to the weak
/\

gravity conjecture may lead to upper
bound. In the case of NS5-brane

construction

Expect 1 € [0.1,1]

1 2\ 2
p Depends on the scenarios of interest L= —5((%)2 — A? (1 — (é) ) —1
and “flattening mechanisms”. Known I s )

examples range from 2/5 to 2.
Here we choose
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See Baumann and McAllister “Inflation and String Theory” for a review



MINIMAL WORKING EXAMPLE: AXION MONODROMY

Steps:

1. ldentify relevant scales (class of models)
2. Learn the mapping from parameters
to observables

B Y
3. Study how predictions change according l
to prior choice
Use numerical methods developed in
previous work to generate a large sample
assuming
N

w~U0.1,1) p~U(0.1,2)

- Take a random draw of u and p N .
- Solve background equations of motion to L o 4 ¢
= —= —A 1+ (£ —1
get total number of e-folds £ 2 (09) ( i ( )
-« Solve equations of motion for the - -

perturbations and compute n, at pivot scale
- Repeat many times

- Use appropriate regression method to get ns(u, p)



Considered three regression methods:

 Neural Network
« Gaussian Process
« Gradient Boosted Trees —
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MINIMAL WORKING EXAMPLE: AXION MONODROMY

Steps:

1. ldentify relevant scales (class of models)
2. Learn the mapping from parameters
to observables
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3. Study how predictions change according l l
to prior choice Q @

AN

Consider a range of priors and compute
the mutual information
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MINIMAL WORKING EXAMPLE: AXION MONODROMY
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The spectral index contains significantly more information about p than u




MINIMAL WORKING EXAMPLE: AXION MONODROMY
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MINIMAL WORKING EXAMPLE: AXION MONODROMY
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CONCLUSIONS

;
@ @ Bayesian networks are a highly flexible
; J framework well suited for model building

\ v In string theory

Regression methods currently being
developed by the machine learning
community can radically reduce the
computational cost of studying inflation
models

The mapping from model parameters to
observables results in an information
bottleneck. This may enable robust
predictions despite incomplete
knowledge of the underlying theory




