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Complete Intersection Calabi-Yau (CICYs)
• A family of CICYs is described by a configuration 

matrix:

with m rows and K+1 columns.

• Ambient space is 
• Remaining columns give degree of defining relations:
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Calabi-Yau condition: D-fold condition:



Example:

• An example of a configuration 
matrix (CICY four-fold 244):

• The different choices of defining relation 
corresponds to a redundant description of part of 
complex structure moduli space:

• This example is a Calabi-Yau four-fold.
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CICY Data Sets:
• Three-Folds:

• Hübsch, Commun.Math.Phys. 108 (1987) 291
• Green et al, Commun.Math.Phys. 109 (1987) 99
• Candelas et al, Nucl.Phys. B 298 (1988) 493
• Candelas et al, Nucl.Phys. B 306 (1988) 113

• Data Set classified: 7890 configuration matrices in the 
set.

• This is the data set that has been used extensively in 
heterotic compactifications leading to, for example, a 
classification of 1000s of heterotic standard models. 



• Four-Folds:

• Brunner et al, Nucl.Phys. B498 (1997) 156-174

• JG et al, JHEP 1307 (2013) 070

• JG et al, JHEP 1409 (2014) 093

• Data set classified: 921,497 configuration matrices in 

the set.

• We are currently building up the technology to use 

this data set for F-theory analysis and model building 

– as I will describe later.

• All Hodge data etc. are available for these manifolds:
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• Generalized CICYs:
• One can consider CICY configuration matrices with 

negative signs in them and still obtain algebraic 
varieties!

Consider:

• In such a matrix we consider “applying” the 
hypersurfaces one at a time from left to right…
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h0(P1 ⇥ P1 ⇥ P5,O(1, 1, 3)) = 224



• However

there is no such polynomial in the ambient space
• Consider                       restricted to one of the 

proceeding hypersurfaces,      :

Using the Koszul sequence, one can show that:
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• One might ask what does section look like? 
• If we could write it in coordinates on          it would 

be polynomial.
• Thus the sections can’t have singularities on      

even though we might naively think of them as 
rational functions.

• To see a little more of the structure lets just consider 
the following piece of the configuration matrix:
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• We have the defining relations:

• So on any patch in the normal open cover of the 
second       the defining relations are polynomial. 

• But the co-dimension two manifold can not be 
written globally as a polynomial in ambient space 
homogeneous coordinates.

• Note the second defining relation above is unique.
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• This manifold can be
shown to be smooth.

• Its Hodge data and
Euler Characteristic are:

• This is not a manifold in the regular CICY list.
• This Hodge pair does appear in the Kreuzer-Skarke data 

set – but this construction does give rise to manifolds 
that are definitely new.  
• It is important to check the cohomology of the trivial 

bundle on these manifolds to ensure connectedness.
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Properties of CICYs: Torus Fibrations
• Consider configuration matrices which can be put in the 

form:

• This is an torus fibred four-fold
• In our list of 921,497 matrices, 921,020 have such a 

fibration structure.


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• Total of 50,114,908 different torus fibrations.

• Average of 54.4 fibrations per manifold.

See also S. Johnson and 
W. Taylor arXiv:1406.0514
and arXiv:1605.08052 

A given manifold/configuration matrix 
may admit many obvious torus 
fibrations…



•Threefolds:

• Total of 77,744 different torus fibrations in data set.
• Average of 9.85 fibrations per manifold…
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• As a simple example we can have:

• Note that we have a variety of different bases here 
(Hirzebruchs,                ,        etc in this case).
• It doesn’t just have to be torus fibration structures that 

exist in a CICY… lower dimensional Calabi-Yau of all kinds 
are ubiquitous (results coming soon).
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Here, the entries in the matrix F , and the dimension of the product of projective
spaces A1, are chosen such that [A1|F ] is one dimensional. This is then a Calabi-
Yau onefold, i.e. a torus. The configuration matrix (3.14) in such a case describes
an fibration of this onefold over the base [A2|B], where the variation of the fibre
over the base is described by the matrix T . Clearly, configurations of the form
(3.14) which are related by a permutation of rows and columns which do not mix
up the fibre and base pieces describe the same elliptic fibration. Redundancies
of this and related forms have been removed in enumerating the elliptic fibration
structures which are exhibited by the CICY fourfold data set [18].

We find that the 921,497 CICY fourfold configuration matrices exhibit a total
of 50,114,908 di↵erent obvious elliptic fibrations, with an average of approximately
54 di↵erent fibrations per configuration matrix. The distribution of the number of
elliptic fibrations per configuration matrix is plotted in Figure 3.
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Figure 3. A plot of the number of CICY fourfold configuration
matrices exhibiting given numbers of obvious elliptic fibrations.

To give a specific example, we can enumerate the obvious elliptic fibrations
exhibited by our example configuration matrix (2.2). Rewriting this configuration
matrix in the form (3.14) in every inequivalent way leads to the following possibil-
ities.
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The dotted lines in (3.15) are intended to guide the eye so that one may easily
isolate the form (3.14) in these examples. For these examples one may immediately
read o↵ from the form of B and A2 that, F1 is an elliptic fibration over a P1

fibration over F1, F2 is an elliptic fibration over P1 ⇥ F1 and F3,F4 and F5 are all
elliptic fibrations over P1 ⇥ P2.
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Here, the entries in the matrix F , and the dimension of the product of projective
spaces A1, are chosen such that [A1|F ] is one dimensional. This is then a Calabi-
Yau onefold, i.e. a torus. The configuration matrix (3.14) in such a case describes
an fibration of this onefold over the base [A2|B], where the variation of the fibre
over the base is described by the matrix T . Clearly, configurations of the form
(3.14) which are related by a permutation of rows and columns which do not mix
up the fibre and base pieces describe the same elliptic fibration. Redundancies
of this and related forms have been removed in enumerating the elliptic fibration
structures which are exhibited by the CICY fourfold data set [18].

We find that the 921,497 CICY fourfold configuration matrices exhibit a total
of 50,114,908 di↵erent obvious elliptic fibrations, with an average of approximately
54 di↵erent fibrations per configuration matrix. The distribution of the number of
elliptic fibrations per configuration matrix is plotted in Figure 3.
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Figure 3. A plot of the number of CICY fourfold configuration
matrices exhibiting given numbers of obvious elliptic fibrations.

To give a specific example, we can enumerate the obvious elliptic fibrations
exhibited by our example configuration matrix (2.2). Rewriting this configuration
matrix in the form (3.14) in every inequivalent way leads to the following possibil-
ities.
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P2 1 2 0 0 0 0
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Can we go beyond these obvious 
fibrations?
• Conjecture by Kollár (rough description):

A Calabi-Yau threefold is genus one fibered if and only if 
there exists a divisor       such that

for every algebraic curve

(and similarly in higher dimensional cases)
• Proven in threefold case by Oguiso, Wilson.

D

D · C � 0

D3 = 0



• The question is, do we have good computational control 
over all of the elements of       ?
• In favorable cases we do. For example in the case,

all divisor classes descend from divisor classes in the 
ambient space.
• In non-favorable cases we don’t. For example

has                     but          of the ambient space is only     .
• Of 7890 CICY threefolds in the original list, only 4874 are 

favorable.



• We can obtain new configuration matrices describing the 
same manifolds by the process of contraction/splitting:

• Use this to increase the size of the ambient space 
affording the configuration a better chance of being 
favorable

• By splitting we have obtained favorable descriptions of 
all but 7842 of the 7890 CICYS.

• We can then compute data such as intersection 
numbers, line bundle cohomology etc completely in 
these cases.


n 1 1 . . . 1 0
n u1 u2 . . . un+1 q

�
 !

⇥
n

Pn+1
a=1 ua q

⇤

Euler number doesn’t change            manifolds same



What about the remaining 48?
• It turns out that these can all be written as 

hypersurfaces in direct products of del Pezzo surfaces.
• For example:

can be written as the anti-canonical hypersurface inside 

• Enough is known about the divisors of del Pezzo’s that 
we can then find a favorable description of these spaces 
too.

Thus we find a favorable description of all CICYs.

times



• With these descriptions we can compute almost all of 
the information we need to investigation the fibrations of 
all CICYs. There are, however, some subtleties associated 
to the Kahler cone structure.
• For the 4874 “Kahler favorable” cases which are 

favorable in products of projective spaces, and for which 
the Kahler cone is the naive one induced from the 
ambient space, obvious fibrations and Kollár fibrations 
coincide.

However, in general there can be many more Kollár
fibrations than obvious ones.

• A good example is the Schoen manifold – which admits 
an infinite number of genus one fibrations!

(See also Grassi,Morrison; Aspinwall, Gross; 
Oguiso; Piateckii-Shapiro, Shafarevich).



Fibrations and quotients
• One can create a new (non-simply connected) Calabi-Yau by 

quotienting a CICY by a freely acting symmetry.
• Example: Take the bicubic:

• With homogeneous coordinates:

• And quotient by the following        group action:

• Clear in this case, the quotienting preserves the fibration.

X =


P2 3
P2 3

�

xa,i

g : xa,j ! !

j
xa,j

a = 1, 2 i = 0, 1, 2

Z3



•More generally what can we say about fibrations 

in quotients of CICYs?

• Classification of symmetries:

• Braun, JHEP 1104 (2011) 005

(The equivalent classifications for the four-folds has   
not yet been carried out – although may not be as        
interesting.)

• A lot of work has already been done classifying the 

properties of the associated quotients:

• Candelas et al, arXiv:1602.06303

• Braun et al, arXiv:1512.08367

• Candelas et al, arXiv:1511.01103

• Constantin et al, arXiv:1607.01830



Upcoming work with Lara Anderson and Brian Hammack:
• Of the 1632 symmetry-CICY pairs (for manifolds with 

fibration), 1552 of them preserve some fibration (95%).
• Of 20700 fibration/symmetry pairs, 17161 preserved.

Symmetry Fibs preserved Fibs not preserved %preserved

Z2 8812 464 95%

Z3 175 201 46.5%
Z4 120 244 33.0%
Z5 0 30 0.0%
Z6 62 438 12.4%

Z2 ⇥ Z2 7711 1488 83.8%
Z2 ⇥ Z4 105 200 34.4%
Z3 ⇥ Z3 176 0 100%



• There are several larger symmetries that appear 
(including non-Abelian symmetries), none of which 
preserve any fibrations:

• In any case where the fibration is preserved, the base of 
the quotiented fibration is divided by same group as 
total space.
• Classifications of the bases that appear will be provided 

in the paper.

Z8 , Z10 , Z12 , Q8 , Z2 ⇥Q8 , Z3 o Z4 ,

Z8 ⇥ Z2 , Z4 o Z4 , Z8 o Z2 , Z4 ⇥ Z4 ,

Z10 ⇥ Z2



Summary:
• We reviewed some recent progress in studying the 

geometry of Calabi-Yau manifolds described as 
complete intersections in products of projective spaces.
• Essentially all known Calabi-Yau are genus one fibered
• In every case where we have looked, essentially all 

known Calabi-Yau are multiply fibered
• For the CICYs, on small enough data sets integer 

computation can be performed using existing 
techniques…
• … but polynomial based computations can be 

prohibitively expensive to perform exhaustively, even 
over these small data sets, and we could benefit from 
new tools.


