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A different view

H—tt candidate event from 2012

+ Sub-detector systems record
@ATLAS various types of signatures

EXPERIMENT
http://atlas.ch

- Aim to reconstruct objects such
as particle tracks or calorimeter
showers, etc.

- Combine information to
distinguish and identify different
particles (muons, electrons,
photons, jets, missing transverse
energy(Ermiss))

Run: 204153
Event: 35369265
2012-05-30 20:31:28 CEST

Data
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Where does machine learning (ML) fit in?
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the Higgs boson

- Searches for new physics



Where does machine learning (ML) fit in?

Data processing Data
& reconstruction analysis

4 P

Comprehensible performance

Sufficient size of datasets Extensive validation studies
required to understand results

. Lepton identification (BDT) Possibly statistical limitations

- W-boson and top quark

identification (BDT, DNN) - Searches for/measurements of
. b-quark tagging (RNN, DNN, the Higgs boson (BDT)
BDT) - Searches for new physics (BDT)

+ Quark/gluon jet tagging (CNN)
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Machine learning

Interdisciplinary field of computer science, statistics and probability theory
Mathematical model mapping a set of input values to output values

Estimation of a statistical model from data (learning)

David Handl | string_data Workshop | 27th March 2018



Machine learning

Interdisciplinary field of computer science, statistics and probability theory
Mathematical model mapping a set of input values to output values

Estimation of a statistical model from data (learning)

Train

Training data >

David Handl | string_data Workshop | 27th March 2018



Machine learning

Interdisciplinary field of computer science, statistics and probability theory
Mathematical model mapping a set of input values to output values

Estimation of a statistical model from data (learning)

Train Test

Training data >

Evaluation

Test data >

David Handl | string_data Workshop | 27th March 2018



Machine learning

Interdisciplinary field of computer science, statistics and probability theory
Mathematical model mapping a set of input values to output values

Estimation of a statistical model from data (learning)

Train Test

Training data >

Evaluation

Test data >

Make predictions on new data based on the estimated statistical model
Widely applied in HEP: Analyis, Computing, Reconstruction, Triggering, etc.

Multiple architectures available depending on the use case (boosted decision
trees, neural networks, convolutional networks, ...)
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Neural networks (NN)

Input Hidden

layer layer Y2 = XWO
Output =
2
X Y® layer

a® = f(Y®)

YO =a@WQ®)

(1) WQ2)
W §= F(YO)

Trainable Trainable
parameters parameters

Form the basis of modern algorithms

Mapping an n-dimensional input to a m-dimnesional output by matrix multiplication

f indicates the activation of a single neuron (sigmoid, tanh, RelLU, ...)

By optimising the weights the predicted output is optimised
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Deep Convolutional Neural Network (CNN)

pooled Fully-connected 1

feature maps pooled  featuremaps  faatyre maps
feature maps O
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inpug Convolutional Pooling 1 Convolutional  pooling 2
layer 1 layer 2

Entropy 2017, 19(6), 242; doi:10.3390/e19060242

Processing data of a grid-like topology (e.g. 2-d images)
Convolutional layers are organised in feature maps (e.qg. indicating different properties)

Pooling layer creating an "invariance to local translations’
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https://doi.org/10.3390/e19060242

Recurrent Neural Network (RNN)
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"Deep Learning’, doi:10.1038/nature14539

Map an input sequence onto an output sequence
Neurons get inputs from other neurons at different time steps

Possible to process sequences of variable size
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Boosted Decision Trees (BDT)

Sequential application of cuts, final nodes classify an eventas S or B
- Easy to interpret and visualise
- Weak variables are ignored
(doesn’t deteriorate the performance)
- But also very sensitive to statistical
fluctuations in training data

@
o
N
O

For each variable find the best partition ("cut”),
and repeat with each subsequent node c

Boosted Decision Trees (1996) h a'BOOSt

- Build highly effective classifiers b . ,
, ,g y y A Decision-Theoretic Generalization of On-Line Learsigg /
combining a large number of mediocre and an Application to Boosting*

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 55, 119-139 (1997)
ARTICLE NO. SS971504

ones Yoav Freund and Robert E. Schapire®
AT&T Labs, 180 Park Avenue, Florham Park, New Jersey 07932

Received December 19, 1996
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ML techniques for
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Quark versus gluon jets with jet images

ATL-PHYS-PUB-2017-017

+ Quarks and gluons “hadronize” in the
detector and form a jet

- Differentiating between quark-/gluon-
initiated jets has broad applicability in
measurements and searches

- Full detector simulation based on
rotated, Lorentz boosted and
normalised fixed size grids (jet
images)

- CNN utilises entire jet radiation pattern

David Handl | string_data Workshop | 27th March 2018


http://cdsweb.cern.ch/record/2275641

Quark versus gluon jets with jet images Cluon ot

ATL-PHYS-PUB-2017-017
K ATLAS Simulation. Preliminary x

anti-k,, R =0.4, 150 < pT/GeV < 200

o
(V)

= 04 >
2 | |Truth particles g
§ 0_2__ . . 0.15 05_
- Quarks and gluons “hadronize” inthe [ |
2 0 0.1
detector and form a jet g T N
. . . —0.2_— . 0.05
- Differentiating between quark-/gluon- -
initiated jets has broad applicability in Y - L
0.4 -0.2 0 0.2 0.4
measureme ntS an d Seda I’Ch es Translated Azimuthal Angle ¢

- Full detector simulation based on
rotated, Lorentz boosted and
normalised fixed size grids (jet
images)

- CNN utilises entire jet radiation pattern

David Handl | string_data Workshop | 27th March 2018


http://cdsweb.cern.ch/record/2275641

Quark versus gluon jets with jet images

Gluon Jet
ATL-PHYS-PUB-2017-017
ATLAS Simulation Preliminary ATLAS Simulation Preliminary
Gluon Jets, Truth Constituents Gluon Jets, Track Constituents
anti-k,, R = 0.4, 150 <pT/GeV< 200 anti-k,, R = 0.4, 150 <pT/GeV<200
= 04 02 5 = 0.4 02 5
S }|Truth particles 2 5 [|Associated tracks g g
% 0.2_— E B 0.15 X % 0.2\ = . 0.15 X
o o
- Quarks and gluons “hadronize” inthe [£ | g
Q g . (‘gﬁ o+ 0.1 % o+ [] ‘ 0.1
detector and form a jet g0 O s I
. o -0.2_— [ 0.05 -0.2_— [ 0.05
- Differentiating between quark-/gluon- - :
initiated jets has broad applicability in Y u e ! I u L
0.4 -0.2 0 0.2 0.4 ~0.4 -0.2 0 0.2 0.4
measurements and Seda rCheS Translated Azimuthal Angle ¢ Translated Azimuthal Angle ¢

- Full detector simulation based on
rotated, Lorentz boosted and
normalised fixed size grids (jet
images)

- CNN utilises entire jet radiation pattern

David Handl | string_data Workshop | 27th March 2018


http://cdsweb.cern.ch/record/2275641

Quark versus gluon jets with jet images Cluon ot

ATL-PHYS-PUB-2017-017
( ATLAS Simulation Preliminary ATLAS Simulation Preliminary \

Gluon Jets, Truth Constituents Gluon Jets, Track Constituents
anti-k,, R = 0.4, 150 <pT/GeV< 200 anti-k,, R = 0.4, 150 <pT/GeV<200
— 04 02 > = 0.4 0.2 >
S }|Truth particles 2 5 [|Associated tracks g g
% 0.2_— . . 0.15 05_ § 0.2 . . . 0.15 E
o o
. Quarks and gluons “hadronize” in the | & g
Q g . (_% o+ 0.1 % o+ [] ‘ 0.1
detector and form a jet £ O g0 I
. o -0.2_— ] 0.05 -0.2_— ] 0.05
- Differentiating between quark-/gluon- - :
initiated jets has broad applicability in Y u e * ol - o
~0.4 -0.2 0 0.2 0.4 Z0.4 -0.2 0 0.2 0.4
measurements and Seda rCheS Translated Azimuthal Angle ¢ Translated Azimuthal Angle ¢
- Full detector simulation based on ATLAS Simulation Preliminary
Gluon Jets, Topocluster Constituents
rotated, Lorentz boosted and _ ga "My =04, 150 <p,/GeV <200 0o
normalised fixed size grids (jet s [ n : = g
images) % 0.2:— u ] 0.15 E
¢ . -
- CNN utilises entire jet radiation pattern |3 [ H o1
£ .f O
—0.2_— 0.05
| Cluster .l

_04 1 1 I 1 1 ! ! ! ! ! ! ! 0
-0.4 -0.2 0 0.2 0.4
Translated Azimuthal Angle ¢

David Handl | string_data Workshop | 27th March 2018


http://cdsweb.cern.ch/record/2275641

Quark versus gluon jets with jet images
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ATL-PHYS-PUB-2017-017

- Quarks and gluons “hadronize” in the
detector and form a jet

Translated Pseudorapidity n

- Differentiating between quark-/gluon-
initiated jets has broad applicability in
measurements and searches

- Full detector simulation based on
rotated, Lorentz boosted and
normalised fixed size grids (jet
images)

* CNN utilises entire jet radiation pattern
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Average jet images
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+ Gluon jets tend to have more constituents and a broader radiation pattern

- Average is also determined for the other 3 types of images
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Results of quark/gluon classification

ATL-PHYS-PUB-2017-017
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- Two types of images are stacked and classification is performed

- CNN based tagging algorithm shows similar performance than individual physically
motivated observables

- Further improvements are under investigation

David Handl | string_data Workshop | 27th March 2018


http://cdsweb.cern.ch/record/2275641

ldentifying b-tagged jets with RNN's

ATL-PHYS-PUB-2017-003

+ Important for precise SM
measurements (H—bb) as well as
exploring new physics

- Aim to separate jets containing a b-
hadron from jets initiated by lighter

quark flavours

 Classify 4 categories:
b-, c-, light-hadrons and hadronic T

decays

+ b-hadrons travel a few mm before
decaying — secondary vertex
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- Important for precise SM ATLAS default high-level algorithm

measurements (H—bb) as well as

exploring new physics
Impact parameter  Secondary vertex  Multi-vertex decay

- Aim to separate jets containing a b- based fitting chain finder
hadron from jets initiated by lighter
quark flavours

 Classify 4 categories:
b-, c-, light-hadrons and hadronic T

v
decays
- b-hadrons travel a few mm before Boosted decision
tree
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ldentifying b-tagged jets with RNN's

ATL-PHYS-PUB-2017-003

- Important for precise SM ATLAS default high-level algorithm

measurements (H—bb) as well as
exploring new physics

\‘ Secondary vertex  Multi-vertex decay

Imp
- Aim to separate jets containing a b- fitting chain finder
hadron from jets initiated by lighter
quark flavours
 Classify 4 categories:
b-, c-, light-hadrons and hadronic T ‘
decays
- b-hadrons travel a few mm before Boosted decision
tree

decaying — secondary vertex

Novel approach uses track properties as
input to RNN
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ldentifying b-tagged jets with RNN's
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Network architecture
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Performance of recurrent classifier

ATL-PHYS-PUB-2017-003
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+ Default high-level algorithm (MV2c10) also depicted as an upper limit on the performance
«  Recurrent classifier (RNNIP) outperforms the current standard approach (IP3D)

- Additional studies ongoing to further improve the tagging efficiency
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ML techniques in
data analyses
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Multivariate techniques in physics analyses

Algorithms aim to separate particular events from each other
(e.g. hypothetical supersymmetric signature from SM background)

ML techniques to search for new particles is relatively novel

There are also potential risks that have to be reduced or completely avoided

Particular emphasis on following categories:

David Handl | string_data Workshop | 27th March 2018




Multivariate techniques in physics analyses

Algorithms aim to separate particular events from each other
(e.g. hypothetical supersymmetric signature from SM background)

ML techniques to search for new particles is relatively novel

There are also potential risks that have to be reduced or completely avoided

Particular emphasis on following categories:

Statistics Optimisation Validation Systematics

David Handl | string_data Workshop | 27th March 2018




Multivariate techniques in physics analyses

Algorithms aim to separate particular events from each other
(e.g. hypothetical supersymmetric signature from SM background)

ML techniques to search for new particles is relatively novel
There are also potential risks that have to be reduced or completely avoided

Particular emphasis on following categories:

Statistics Optimisation Validation
- How many training «+ Algorithm? - Modeling of input?
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Statistics
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Optimisation

- Algorithm?

- Figure of merit?

* Input variables

- Trainable parameters
- Avoid overtraining

David Handl | string_data Workshop | 27th March 2018

Validation

- Modeling of inputs?
- What does the

algorithm learn?

- Correlations?
- Modeling in CR and

VR

No tight order of these categories — makes it more complex

Systematics

- Fluctuations of syst.

MC?

- Uncertainties for

different algorithms?

- How to increase

statistics?

- ldeas for mitigation?




Multivariate techniques in physics analyses

Algorithms aim to separate particular events from each other
(e.g. hypothetical supersymmetric signature from SM background)

ML techniques to search for new particles is relatively novel

There are also potential risks that have to be reduced or completely avoided

Particular emphasis on following categories:

Statistics

- How many training
events?

- Relation between

trainable parameters
and training events

- |deas to increase

statistics?

Optimisation

- Algorithm?

- Figure of merit?

* Input variables

- Trainable parameters
- Avoid overtraining

Validation

- Modeling of inputs?
- What does the

algorithm learn?

- Correlations?
- Modeling in CR and

VR

Systematics

- Fluctuations of syst.

MC?

- Uncertainties for

different algorithms?

- How to increase

statistics?

- ldeas for mitigation?

No tight order of these categories — makes it more complex

Understanding what the algorithm learns is vital!
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How much training data is needed

“Get as much as you can!” — every Data Scientist always

No accurate answer! — Strongly depends on complexity of problem and learning algorithm
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How much training data is needed

“Get as much as you can!”™ — every Data Scientist always
No accurate answer! — Strongly depends on complexity of problem and learning algorithm
Rules and tools that help to tackle this question:

« Perform learning curves
(Error function can be mean squared error or any other)

A “k
= Variance
= i 2 More data can help
O i Bias ) closing the gap
rain A more advanced .
algorithm reduce error train
training events training events
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How much training data is needed

“Get as much as you can!”™ — every Data Scientist always
No accurate answer! — Strongly depends on complexity of problem and learning algorithm
Rules and tools that help to tackle this question:

« Perform learning curves
(Error function can be mean squared error or any other)

A u&
g test g Variance
o . o More data can help
O - Bias @ closing the gap
rain A more advanced _
algorithm reduce error train
training events training events
o [
+ 10-1 x more jcramlng 3 . Metrics are
data than trainable parameters =
. 0] parameters to evaluate
« Chosen metric also depends on S :
algorithm performance
the problem « 1to 15 .

training events / parameters
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Associated production of Higgs boson with top quark pairs

arxiv:1712.08891

Higgs boson discovery by the ATLAS and CMS collaborations was a crucial milestone

Measuring Yukawa interactions are important, which account for fermion masses
So far, only the decay H—7r has been observed and evidence of H—bb has been found
Coupling of the Higgs boson to top quark could be sensitive to effects beyond the SM

Direct measurement can be achieved via the process gg/qq—ttH
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Associated production of Higgs boson with top quark pairs

arxiv:1712.08891

Higgs boson discovery by the ATLAS and CMS collaborations was a crucial milestone

Measuring Yukawa interactions are important, which account for fermion masses
So far, only the decay H—7r has been observed and evidence of H—bb has been found
Coupling of the Higgs boson to top quark could be sensitive to effects beyond the SM

Direct measurement can be achieved via the process gg/qq—ttH

ttH-oWw/zZZ
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Analysis strategy (ttH)

arxiv:1712.08891

ttH production cross section is very small compared to SM background

Extensive search strategy has been performed with many different final states:
2 - 4 lepton final states considering electrons, muons and hadronically decaying taus
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Analysis strategy (ttH)

arxiv:1712.08891

ttH production cross section is very small compared to SM background

Extensive search strategy has been performed with many different final states:
2 - 4 lepton final states considering electrons, muons and hadronically decaying taus

N

Number of Thad

3¢+1Thad

1 2 3 4
Number of light leptons
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Analysis strategy (ttH)

arxiv:1712.08891

Each of these "channels” are further splitted:
- into control regions (CR) for background estimations
- into signal regions (SR) with enhanced sensitivity

In total 332 030 events are selected in data — 91! expected signal events

All channels perform BDT's to further improve the signal sensitivity

N

Number of Thad

3C+1Thad

1 2 3 4
Number of light leptons
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Results (ttH) S

§ = ATLAS ¢ Data WitH I_§
) 2 C Vs=13TeV, 36.1 fo' [ JttW [lttz ]
arxiv:1712.08891 o " 5sSS [ Diboson  [ANon-prompt |
- .| Post-Fit Mg mis-id  []Other
10 = 7/ Uncertainty --- Pre-Fit Bkgd. J
A maximum-likelihood fit is performed ; . 1
simultaneously on all search regions to extract 102 E
the ttH cross section normalised to SM .
prediction o
_ o] S T A I I AN AN A A A
8 125 | E
D\(; 1 %//%////%////‘4////%////%////%//%#V// 555
5 075 =
Example: 2 lepton channel S ¢ T
-1 -08 -06 -04 -02 O 02 04 06 0.8 1

- Extensive optimisation and validation studies performed BDT output

- Modeling of the input variables
- Understanding correlation of input to the BDT output

- Study the bins size to enhance sensitivity and/or to keep the
remaining backgrounds under control

- Very good agreement between data and SM prediction observed
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Results (ttH) S

§ 1045_ ATLAS ¢ Data WitH I_§
. £ C (s =13TeV, 36.1 fo [ JttW Htiz 1
arxiv:1712.08891 o " 5sSS [ Diboson  [ANon-prompt |

- .| Post-Fit Mo misid  [[]Other
10 = 7/ Uncertainty --- Pre-Fit Bkgd. J
A maximum-likelihood fit is performed - . i
simultaneously on all search regions to extract 107 =
the ttH cross section normalised to SM -

prediction 10

%1052 ! ! ! ! ! IQDatIa ! '-ﬁ,l, ! _ S S T Y T VNI U AN IO A
2 | %T:l?g TeV, 36.1 fo" St — 154 t ! 3 125 E
2 10°F post-Fit = q'm‘?i_?g E Other TP 3 < %//%////%////‘4////yf////yf////rk///yé/#%/ s A
: Wl Fake 7, /. Uncertainty ] % 075 £ 3
10° --- Pre-Fit Bkgd. () 0.5 o . . . . . . . + . . =
: °1 -08 -06 04 02 0 02 04 06 08 1

BDT output

Excess of events over the SM prediction
Is found with an observed significance of
4.1 standard deviations

— first evidence of associated production
of Higgs boson and top quark pair

Data / Pred.
(=]
o .

Y ///T/////////y//

o
o

2r Sr R P Sr s 27 37 4 e 17 27
Ss SR ‘QZ‘/M/CZZ‘QCR V[/C;// CR SS.”?/; "‘7rhad Z\enr 2\0160 "‘27;7% @
0 . .
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Searching for supersymmetry with ML techniques

Supersymmetry is a popular theory for physics beyond the SM
Provides solutions to important open questions (hierarchy problem, dark matter, GUT, ...)

Basic principle is a symmetry between bosons and fermions
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Searching for supersymmetry with ML techniques

Supersymmetry is a popular theory for physics beyond the SM
Provides solutions to important open questions (hierarchy problem, dark matter, GUT, ...)

Basic principle is a symmetry between bosons and fermions

Example: Searching for scalar top quarks

Top (t1) and bottom squarks are superpartners of top and bottom quarks

Naturalness arguments suggest a relatively light t;

t1can be produced at LHC
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Searching for supersymmetry with ML techniques

Supersymmetry is a popular theory for physics beyond the SM
Provides solutions to important open questions (hierarchy problem, dark matter, GUT, ...)

Basic principle is a symmetry between bosons and fermions

Example: Searching for scalar top quarks

Top (t1) and bottom squarks are superpartners of top and bottom quarks

Naturalness arguments suggest a relatively light t;

t1can be produced at LHC t
! 4
Current searches derive mass limits t _ - )2(1)
In terms of simplified models -~
IR ~0
¢ X1
p
t
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Scalar top pair production

Simplified model

t
D « Direct stop pair production
¢ 9 « mass splitting Am = mg; - my;
-  Neutralinos X1 produce large Eymiss
.~ ~0
¢ X1
p i - e -
Difficult to distinguish from tt bkg
t

- Similar final state, except large Eymiss
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Scalar top pair production

Simplified model

t
D « Direct stop pair production
¢ 9 « mass splitting Am = mg; - my;
: « Neutralinos X1 produce large Exmiss
-~ ~0
t X1
p g _ : -
Difficult to distinguish from tt bkg
t .
— Similar final state, except large Eymiss
>
5
A
S _
o Am = mg, —mg9
S "'Q PN 'O' X,
3 o X e
o| MR ST Y e Ra
4 o Q X 4 7 L4
Mass plane of — 0 VY Ll R R
top squark (x) R /Ni\/ SS%*" vV QQ > Re ,i\/
- neutralino (y) AL AN LR 0 e X
R A A s 4
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Search for scalar top quarks in one lepton final states

arxiv:1711.11520

- Along the diagonal Am = mi1 - mg1 ~ m¢ the

/@m RN decay is identical to top quark pair production
X4 X4
¢ X ’
/' /' — Analysis performs 3 independent BDTs
/7& o’ along the diagonal line
'¢® /Qx 'l
V4 44 o Sy
0 L X
a . %
/\,'\' 'l' /X,'\'
X4
'l
X 4
200 300
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Search for scalar top quarks in one lepton final states

arxiv:1711.11520
- Along the diagonal Am = mi1 - mg1 ~ m¢ the
/@m RO decay is identical to top quark pair production
"X 'l
/' /' — Analysis performs 3 independent BDTs
o’ & o’ along the diagonal line
7
'¢® /Q 'l
¢ o ¢
' v $ " /0/\, 12 105"'|'"|'"|'"|"'|"'|"'|"'|"'|"'
- =ATLAS Preliminary o NN =
A\ P X o = {s=13TeV, 36.1 b Data S Total SM 2
N R s I - tN_diag_low []ttaL 1L ]
/\;» R4 N 10°L— m(, §E)=(190’17) GeV DW+jets DS_ingIe top_E
R = —m(i, %,) = (250,77) GeV [H]Diboson []tt+V E
. 103_ i —;
20 300 N -
10— ————— — — = =
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o 3 T+
5
& Of
Im _1:_
-8 EIII|III|III|III|III|III|I|I|I|II
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Search for scalar top quarks in one lepton final states

arxiv:1711.11520

- Along the diagonal Am = mi1 - mg1 ~ m¢ the

/@v RO decay is identical to top quark pair production
X4 X4
¢ X Y 4 . .
/' /' — Analysis performs 3 independent BDTs
/7& R along the diagonal line
X4 X4
RACNEEPAN O o
g v $ A f‘";\, %) 18T
c ATLAS Preliminary NN
0 R4 X S | o ElE-13TeV.30.1 10" Data ~ Total SM
N P N L tN_diag_med DtE 2L Bt 1L
£ P £% 10° I tt+V [ ]WH+jets
s []Single top [l Diboson
¢ 10° = —- m(t,%,)=(250,62) GeV
X 4
10° *
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Search for scalar top quarks in one lepton final states

arxiv:1711.11520

- Along the diagonal Am = mi1 - mg1 ~ m¢ the

/@\v RN decay is identical to top quark pair production
l' l'
/' /' — Analysis performs 3 independent BDTs
o’ o’ ong the diagonal line
X4 Q X4
X4 / A l
¢ Q
$ /1\, _'CL) 5' rrrTT [rrryrrrprrrr T e T T
0 , X, c 10 —ATLAS Prellmlnary - Data == Total SM =
‘ 2 = /s =13TeV, 36.1fb" E
V4 . % L " BDT_high Ot I tt+V ]
py s p - - [JW+jets [ Single top
XY R4 XY 10 mm Diboson =
X4 - -
‘ L —-m(f, ~‘13) (450,277) GeV ]
’ 103—_ ° =
200 300
- Dominant SM background is - -
estimated in data with low output i

Score

« Signal region defined by large
output score

-1E E

S 1 08060402 0 02

 Likelihood fit is performed in
signal region
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Searching for supersymmetry with ML techniques

arxiv:1711.11520

e After likelihood fit no Pure Bino LSP model:?ﬁ1 production,ﬂebff'%?,ﬂeWb%?,'ﬂeti?
significant excesses are % 700 ATLAS |:|>reiimlina|1ryI — Observed mit (+10,)  —
observed compared to SM O - s =13TeV,36.1fb" _-- Expected limit (+10,,) -
expectation I_Cilx* 600;le't at 95% CL . ATLASHL 13 TeV, 321"

S 500 f | ATLAS8Tev, 203 b -

« Exclusion limits are derived for - N =
model of top squark pair - ) . .
production AP s =

N A ' =
Rt ,"' " —

« Large improvement of the : ‘: -
expected limit using BDT , HE —;
compared to the previous ot L NE
analysis 800 000 1200

mT1 [GeV]
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The HiggsML challenge

Public competition organised by ATLAS
in 2014 (https://higgsml.lal.in2p3.1r)

Goal was to separate ATLAS simulated
H—- 1zt events from background

After 4 weeks almost 200 teams had
beaten the in-house benchmark

In total 1785 teams or individuals
participated in the competition

i99sH]  the HiggsML challenge

challenge
May to September 2014

When High Energy Physics meets Machine Learning

/’/'* «“

QAILAS Mt 2z kaggle Qe @)’\ Google

\\\\\\\\\

Organization committee Advisory committee

Baldzs Kégl - Appstat-LAL David Rousseau - Atlas-LAL Isabelle Guyon - Chalearn Thorsten Wengler - Atlas-CERN Joerg Stelzer - Atlos-CERN
(écile Germain - TAC-RI Glen Cowan - Atlos-RHUL (laire Adom-Bourdarios - Atlas-LAL Andreas Hoecker - Atlas-CERN Marc Schoenauer - INRIA
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The HiggsML challenge

The winner performed an algorithm using Ijh;ge%ilﬂ the nggSML chullenge
the average of 70 DNNs with 35 inputs, 3 Rl olos el mber2014
hidden Iayers of 600 nodes each, and 2 When High Energy Physics meets Machine Learning
outputs

This is a classifier with more than 70 million
fitted parameters!

Another award was given to the team that
submitted a model potentially most useful
to the collaboration

The winners’ software framework is
commonly known as XGBoost

.com/c/higgs-boson

\\\\\\\\\

Organization committee Advisory committee

Baldzs Kégl - Appstat-LAL David Rousseau - Atlas-LAL Isabelle Guyon - Chalearn Thorsten Wengler - Atlas-CERN Joerg Stelzer - Atlos-CERN
(écile Germain - TAC-RI Glen Cowan - Atlos-RHUL (laire Adom-Bourdarios - Atlas-LAL Andreas Hoecker - Atlas-CERN Marc Schoenauer - INRIA
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Summary

Massive amounts of data are processed and analysed by the ATLAS collaboration
Machine learning techniques attract more and more attention at the experiment

Several fields of applications exploit the benefits of advanced learning algorithms:
Particle reconstruction and identification
-+ Separation of new signatures from standard model background

ML applications outside HEP care less about systematics — In HEP those effects are
essentiall

Intensive optimisation and validation studies are necessary

Understanding what the algorithm learns is vital!
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