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The problem and the solution

• Problem: in 4D F-theory, given local geometric data near a divisor D

on the base B, decide what’s the (geometric) non-Higgsable gauge group

on D

• Input data (feature): local triple intersection numbers between D and

its neighbors

• Output data (label): the non-Higgsable gauge group on D, only 10

possible choices

• Solution: supervised machine learning
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F-theory

• Physical setup: 4D F-theory compactification on an elliptic Calabi-Yau

fourfold X with complex threefold base B.

• F-theory is a geometric description of strongly coupled IIB superstring

theory.

• The elliptic fibration X over B is described by a Weierstrass form:

y2 = x3 + fx + g (1)

• 7-branes locates at the cod-1 locus of ∆ = 4f 3 + 27g2 = 0, where the

elliptic fiber is singular.

• Non-Abelian gauge group↔ order of vanishing of (f , g ,∆) and other

information.
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F-theory

ord(f ) ord(g) ord(∆) Gauge group

0 0 2 I2 SU(2)

0 0 n ≥ 3 In Spb n2c or SU(n)

1 ≥ 2 3 III SU(2)

≥ 2 2 4 IV SU(2) or SU(3)

≥ 2 ≥ 3 6 I ∗0 G2 or SO(7) or SO(8)

2 3 6 + n I ∗n SO(8 + 2n) or SO(7 + 2n)

≥ 3 4 8 IV ∗ F4 or E6

3 ≥ 5 9 III ∗ E7

≥ 4 5 10 II ∗ E8
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Non-Higgsable phase of F-theory

• We require that the elliptic fibration is “generic”, hence f and g are

general holomorphic sections of line bundles −4KB and −6KB .

• The gauge groups in the 4D supergravity model are minimal (geometric

non-Higgsable). The only possible NH gauge groups are

∅, SU(2), SU(3), G2, SO(7), SO(8), F4, E6, E7, E8

• The number of complex structure moduli h3,1(X ) is maximal.

• From the non-Higgsable phase, we can tune f and g to get bigger

gauge groups, such as GUT SU(5).

• Non-Higgsable gauge group structures are good characterization of the
base geometry, e.g. non-Higgsable clusters in 6D F-theory(Morrison, Taylor

12’)/atomic classification of 6D (1,0) SCFT(Heckman, Morrison, Rudelius,

Vafa 15’).
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6D non-Higgsable clusters

• In 6D F-theory, B is a complex surface, and the geometric data are the

intersection numbers between curves.

• If we require that (f , g) does not vanish to order (4,6) or higher on a

point, then the non-Higgsable clusters are:
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4D non-Higgsable clusters

• In 4D F-theory, B is a complex threefold, the intersection structure is

much more complicated.

• An example found in (Taylor, YNW 15’):

SU(3)

G
2 SU(2)

• It seems that the notation of “cluster” may not be very useful.
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Resolvable bases and good bases

• In 6D F-theory, if (f , g) vanishes to order (4,6) at cod-2 locus, it means

that there’s a strongly coupled (1,0) SCFT sector decoupled with gravity.

• In 4D F-theory, one may expect that cod-2 (4,6) locus will give rise to

4D N = 1 SCFT. There can be subtleties if we include Euclidean

D3-brane effects (Apruzzi, Heckman, Morrison, Tizzano 18’)or G4 flux.

• In general, we accept all the bases with cod-2 (4,6) locus that can be

blown up to get rid of them: resolvable bases.

• good bases: bases without cod-2 (4,6) locus; may have cod-3 (4,6) but

not as high as (8,12).
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Toric threefolds

• For simplicity, we only study the smooth toric base threefolds. Toric

fan: a collection of 3D, 2D, 1D simplicial cones in the lattice Z3.

point ↔ divisor; line ↔ curve; triangle ↔ point.
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Toric threefolds

The triple intersection numbers are labeled as

D1 · D2 · D3 = 1
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Toric threefolds

• The Hirzebruch threefold F̃n (P1 over P2):
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• blue: normal bundle; red: self-intersection of curves
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Blow ups
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Input vector for machine learning

• For divisors D = Fn (Hirzebruch surface) with 4 neighbors:
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Generation of data set

• Separate divisors according to the number of neighbors n:

h1,1(D) = n − 2.

• Compute the triple intersection numbers between divisors. The number

of local triple intersection numbers is different for each n

• Compute f , g and the gauge group on each divisor using toric

geometry machinery
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Generation of data set

• We generate our train set from two different set of good bases:

(1) The end point bases (Taylor, YNW 17’): start with P3, blow up until

one can’t; allowing resolvable bases in the process. The end point is

always good.

(2) The good bases from random walk (Taylor, YNW 15’): start with P3, do

a random blow up/down sequence; do not allow bases with toric (4,6)

curves.

Resolvable base
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Choosing the machine learning method

• Training set: Fn on end point bases, ∼ 3 million samples.

G ∅ SU(2) SU(3) G2 SO(8) F4 E8

N(G ) 2053638 520783 24 286592 8 66934 4374

• Highly unbalanced; we do a resampling and equalize

N(G ) ≈ N(G )max/100.

• On the resampled data set, we separate (train:test)=(0.75:0.25).
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Choosing the machine learning method

Classification method Accuracy Training time

Logistic Regression 77.33% 28.6

Decision Tree 99.17% 1.2

Random Forest 99.32% 2.7

Support Vector Machine 97.05% 4.9

Feedforward Neural Network 96.27% 279

• Untrimmed decision tree is the best method in our case:

(1) Accuracy as high as random forest

(2) Great interpretability

(3) Fast

• Seems that overfitting does not occur
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Decision tree

Root

Yes No

Leave Node

Yes No

Leave Leave

• At each step, we try to split the data set with a feature which maximize

Information gain = I − Nleft

N
Ileft −

Nright

N
Iright , (2)

• I is the Gini index:

I =
∑
i

pi (1− pi ), (3)
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Feature Importance

• f1 = D2D1 is the most important one.
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Results

• For the actual mixed data set from end point bases and other bases, ∼
6,300,170 samples.

• We do a resampling N(G ) ≈ N(G )max/10; (train:test)=(0.75:0.25).

• The decision tree has 66441 nodes and 33221 leaves, and the maximal

depth is dmax = 49.

• The in sample and out of sample accuracies on the resampled data set

are 98.22% and 97.79%. On the original set, it is A = 97.86%.

• Generated a lot of analytic rules in terms of inequalities, for example:

if f1 = D2D1 ≤ −9, then the gauge group is E8.
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Results

If the rule is simple enough, then it can be derived by formula

(Morrison,Taylor 14’):

fk ∈ O(−4KD + (4− k)ND −
∑

D
⋂

Dj 6=∅

φjCij), (4)

gk ∈ O(−6KD + (6− k)ND −
∑

D
⋂

Dj 6=∅

γjCij). (5)
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A Universality

• For each different h1,1(D), train a different decision tree

• Nnodes ∝ Nsamples
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Applications

(1) Cross-check on resolvable bases

• The resolvable bases with toric (4,6) curves are generated from random

walks starting from P3

• The decision tree trained from good bases works on resolvable bases as

well!
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Applications

(2) Constructing local geometric configurations

• Assemble the rules compatible with each other

P1P2P3 Q1 Q2 Q3

-2 -2 -2 -2-2-2-2

-2 -2 -2
-2

-2-2-2

0 0 0 0000

0 0 0 0000

12 12 12 12121212 -1-2 -5 2 -8 5 -11 81 -44 -7
Q0

• An infinite? SU(3) chain with a non-Higgsable SU(3) at each Pn and

Qn
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