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The problem and the solution

e Problem: in 4D F-theory, given local geometric data near a divisor D
on the base B, decide what's the (geometric) non-Higgsable gauge group
on D

e Input data (feature): local triple intersection numbers between D and
its neighbors

e Output data (label): the non-Higgsable gauge group on D, only 10
possible choices

e Solution: supervised machine learning
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F-theory

e Physical setup: 4D F-theory compactification on an elliptic Calabi-Yau
fourfold X with complex threefold base B.

e F-theory is a geometric description of strongly coupled IIB superstring
theory.

e The elliptic fibration X over B is described by a Weierstrass form:
v =x*+k+g (1)

e 7-branes locates at the cod-1 locus of A = 4f3 +27g% = 0, where the
elliptic fiber is singular.

e Non-Abelian gauge group<> order of vanishing of (f, g, A) and other
information.
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F-theory

ord(f) | ord(g) | ord(A) Gauge group

0 0 2 A sU(2)

0 0 n>3 In Spl 5] or SU(n)

1 >2 3 m sU(2)
>2 2 4 v SU(2) or SU(3)
>2 >3 6 15 Gy or SO(7) or SO(8)

2 3 6+n I¥ | SO(8 + 2n) or SO(7 + 2n)
>3 4 8 v Fa or Eg

3 >5 9 1" E

>4 5 10 I Es
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Non-Higgsable phase of F-theory

e We require that the elliptic fibration is “generic”, hence f and g are
general holomorphic sections of line bundles —4Kg and —6K5.

e The gauge groups in the 4D supergravity model are minimal (geometric
non-Higgsable). The only possible NH gauge groups are
@, SU(2), SU(3), Gy, SO(7), SO(8), Fa, Es, E7, Eg

e The number of complex structure moduli h*>1(X) is maximal.

e From the non-Higgsable phase, we can tune f and g to get bigger
gauge groups, such as GUT SU(5).

e Non-Higgsable gauge group structures are good characterization of the
base geometry, e.g. non-Higgsable clusters in 6D F-theory(Morrison, Taylor
12’)/atomic classification of 6D (1,0) SCFT(Heckman, Morrison, Rudelius,
Vafa 15').
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6D non-Higgsable clusters

e In 6D F-theory, B is a complex surface, and the geometric data are the
intersection numbers between curves.

o If we require that (f, g) does not vanish to order (4,6) or higher on a
point, then the non-Higgsable clusters are:
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4D non-Higgsable clusters

e In 4D F-theory, B is a complex threefold, the intersection structure is

much more complicated.

e An example found in (Taylor, YNW 15'):

G, SU(2)

SU(3)
e |t seems that the notation of “cluster” may not be very useful.
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Resolvable bases and good bases

e In 6D F-theory, if (f, g) vanishes to order (4,6) at cod-2 locus, it means
that there's a strongly coupled (1,0) SCFT sector decoupled with gravity.

e In 4D F-theory, one may expect that cod-2 (4,6) locus will give rise to
4D N =1 SCFT. There can be subtleties if we include Euclidean

D3-brane effects (Apruzzi, Heckman, Morrison, Tizzano 18")or Gy flux.

e In general, we accept all the bases with cod-2 (4,6) locus that can be

blown up to get rid of them: resolvable bases.

e good bases: bases without cod-2 (4,6) locus; may have cod-3 (4,6) but
not as high as (8,12).
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Toric threefolds

e For simplicity, we only study the smooth toric base threefolds. Toric
fan: a collection of 3D, 2D, 1D simplicial cones in the lattice Z3.

point <> divisor; line <> curve; triangle <> point.
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Toric threefolds

The triple intersection numbers are labeled as

Dy

P 3
Dj DID;  D.D? Dy

Di-Dy-D3=1
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Toric threefolds

e The Hirzebruch threefold [, (P! over P?):

e blue: normal bundle; red: self-intersection of curves
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Blow ups

Di-1

DyDj -1 D\D3~1

Dy—i DED;—1  DDi-1

=} [ = 12N Ge
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Input vector for machine learning

e For divisors D = T, (Hirzebruch surface) with 4 neighbors:
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Generation of data set

e Separate divisors according to the number of neighbors n:
ht1(D) =n—2.

e Compute the triple intersection numbers between divisors. The number
of local triple intersection numbers is different for each n

e Compute f, g and the gauge group on each divisor using toric
geometry machinery
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Generation of data set

e We generate our train set from two different set of good bases:

(1) The end point bases (Taylor, YNW 17'): start with P, blow up until
one can't; allowing resolvable bases in the process. The end point is
always good.

(2) The good bases from random walk (Taylor, YNW 15'): start with P3, do
a random blow up/down sequence; do not allow bases with toric (4,6)
curves.

Resolvable base
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Choosing the machine learning method

e Training set: IF,, on end point bases, ~ 3 million samples.

1%

SU(2)

SU(3)

Gy

SO(8)

Fa

Eg

N(G)

2053638

520783

24

286592

8

66934

4374

e Highly unbalanced; we do a resampling and equalize
N(G) ~ N(G)max/100.

e On the resampled data set, we separate (train:test)=(0.75:0.25).
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Choosing the machine learning method

Classification method Accuracy | Training time
Logistic Regression 77.33% 28.6
Decision Tree 99.17% 1.2
Random Forest 99.32% 2.7
Support Vector Machine 97.05% 49
Feedforward Neural Network | 96.27% 279

o Untrimmed decision tree is the best method in our case:
(1) Accuracy as high as random forest

(2) Great interpretability

(3) Fast

e Seems that overfitting does not occur
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Decision tree

Root
Leave Node
Leave Leave

e At each step, we try to split the data set with a feature which maximize

Ne Nri
Information gain = | — ;Vft liefe — Tght/righn (2)

e | is the Gini index:

I = Zpi(l - pi), (3)
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Feature Importance
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e fi = D?D; is the most important one.
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Results

e For the actual mixed data set from end point bases and other bases, ~
6,300,170 samples.

e We do a resampling N(G) ~ N(G)max/10; (train:test)=(0.75:0.25).

e The decision tree has 66441 nodes and 33221 leaves, and the maximal
depth is dpax = 49.

e The in sample and out of sample accuracies on the resampled data set
are 98.22% and 97.79%. On the original set, it is A = 97.86%.

e Generated a lot of analytic rules in terms of inequalities, for example:
if i = D?°D; < —9, then the gauge group is Eg.
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Results

d h] A Iz Js Ja Is fo | fia other f; G
2 B EC - B - - - )
L § -6 - - - <0 - - fr20 Fy
I s - S| <3 <1 f120, fra< -1 P
10 4 -l s >4 <-1 = i
9 0| 5 <2 -t frzo0 Fy
9|5 -4 >5 - - G
10 -4 <4 - - frz0 Gy
12 4 27| 4 = f120, fo20 Gy
8 -3 2-5 £ e fag-1 Gy
9|4 -3 2-5 = = fu=0fiz<-2 Gy
9 -l >-5| 27 12< -1 Gy
16 3 >12 |-d~2| - f220, fu<-1 sU(2)
12 35 >-5 . 220, fu>-2 G
1 N —5~ll| - (<2 F2> -1, fu Gy
13 >1] 3 25 . F120, 1020, iz <-1 G2
16 -1 s ~5~3| 210 | - fu120, fiz>-1 SU(2)
16 >2 3 —5~11 <-1 f120, 2> -1 Gy
20 B Y | - [S-1fr 20, f020, fu 20, 12> -1, fu20 SU(2)
12 2 21 fs<-2 99.9996% SU(2), 0.0004%2
1 >3| 2 = - g Bzl fs>-1 99.94% SU(2), 0.06%2
12 S| 2 <2 | - [<-3 fiz < -1, fu <0 SU(2
16 >1| 2 >0 |21 - fos=a, fys1 3

13 2 - <-3

13 >2| 2 Bt

19 >1] 2 0~2 [8~i2| -

If the rule is simple enough, then it can be derived by formula
(Morrison, Taylor 14'):

f € O(—4Kp+ (4 —k)Np — > ¢;Cy), (4)

Dm Di#92

8 € O(—6Kp+ (6 —K)Np — > +GCy). (5)
DﬂDj#Z
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A Universality

e For each different h1:}(D), train a different decision tree
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Applications

(1) Cross-check on resolvable bases
e The resolvable bases with toric (4,6) curves are generated from random
walks starting from P3
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e The decision tree trained from good bases works on resolvable bases as

well!
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Applications

(2) Constructing local geometric configurations

e Assemble the rules compatible with each other

e An infinite? SU(3) chain with a non-Higgsable SU(3) at each P, and
Qn
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