Learning non-Higgsable gauge groups in 4D F-theory

Upcoming work with Zhibai Zhang

Yi-Nan Wang

CTP, MIT

Workshop on data science and string theory, LMU Munich Mar. 27th, 2018

伺い イヨト イヨト

1/24

- Problem: in 4D F-theory, given local geometric data near a divisor D on the base B, decide what's the (geometric) non-Higgsable gauge group on D
- \bullet Input data (feature): local triple intersection numbers between D and its neighbors
- \bullet Output data (label): the non-Higgsable gauge group on D, only 10 possible choices
- Solution: supervised machine learning

イボト イラト イラト

• Physical setup: 4D F-theory compactification on an elliptic Calabi-Yau fourfold X with complex threefold base B.

• F-theory is a geometric description of strongly coupled IIB superstring theory.

• The elliptic fibration X over B is described by a Weierstrass form:

$$y^2 = x^3 + fx + g \tag{1}$$

• 7-branes locates at the cod-1 locus of $\Delta = 4f^3 + 27g^2 = 0$, where the elliptic fiber is singular.

• Non-Abelian gauge group \leftrightarrow order of vanishing of (f, g, Δ) and other information.

(III) (AREA (AREA (AREA)))

ord(f) ord(g)		$\operatorname{ord}(\Delta)$	Gauge group		
0	0	2	I_2	SU(2)	
0	0	$n \ge 3$	I _n	$\operatorname{Sp}\lfloor \frac{n}{2} \rfloor$ or $\operatorname{SU}(n)$	
1	≥ 2	3		SU(2)	
≥ 2	2	4	IV	SU(2) or SU(3)	
≥ 2	≥ 3	6	I_0^*	G_2 or SO(7) or SO(8)	
2	3	6 + <i>n</i>	I_n^*	SO(8 + 2n) or $SO(7 + 2n)$	
≥ 3	4	8	IV*	F_4 or E_6	
3	\geq 5	9	<i>III*</i>	<i>E</i> ₇	
≥ 4	5	10	11*	E_8	

・ロト ・回ト ・ヨト ・ヨト

Э.

Non-Higgsable phase of F-theory

• We require that the elliptic fibration is "generic", hence f and g are general holomorphic sections of line bundles $-4K_B$ and $-6K_B$.

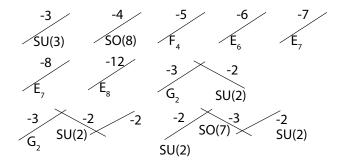
• The gauge groups in the 4D supergravity model are minimal (geometric non-Higgsable). The only possible NH gauge groups are \emptyset , SU(2), SU(3), *G*₂, SO(7), SO(8), *F*₄, *E*₆, *E*₇, *E*₈

- The number of complex structure moduli $h^{3,1}(X)$ is maximal.
- From the non-Higgsable phase, we can tune f and g to get bigger gauge groups, such as GUT SU(5).

• Non-Higgsable gauge group structures are good characterization of the base geometry, e.g. non-Higgsable clusters in 6D F-theory(Morrison, Taylor 12')/atomic classification of 6D (1,0) SCFT(Heckman, Morrison, Rudelius, Vafa 15').

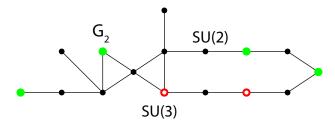
• In 6D F-theory, B is a complex surface, and the geometric data are the intersection numbers between curves.

• If we require that (f, g) does not vanish to order (4,6) or higher on a point, then the non-Higgsable clusters are:



• In 4D F-theory, B is a complex threefold, the intersection structure is much more complicated.

• An example found in (Taylor, YNW 15'):



• It seems that the notation of "cluster" may not be very useful.

7/24

• In 6D F-theory, if (f, g) vanishes to order (4,6) at cod-2 locus, it means that there's a strongly coupled (1,0) SCFT sector decoupled with gravity.

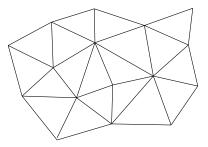
• In 4D F-theory, one may expect that cod-2 (4,6) locus will give rise to 4D $\mathcal{N} = 1$ SCFT. There can be subtleties if we include Euclidean D3-brane effects (Apruzzi, Heckman, Morrison, Tizzano 18')or G_4 flux.

• In general, we accept all the bases with cod-2 (4,6) locus that can be blown up to get rid of them: resolvable bases.

• good bases: bases without cod-2 (4,6) locus; may have cod-3 (4,6) but not as high as (8,12).

8/24

• For simplicity, we only study the smooth toric base threefolds. Toric fan: a collection of 3D, 2D, 1D simplicial cones in the lattice \mathbb{Z}^3 .

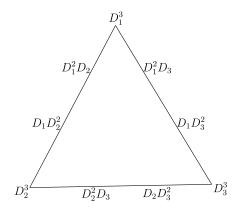


point \leftrightarrow divisor; line \leftrightarrow curve; triangle \leftrightarrow point.

化压力 化压力

Toric threefolds

The triple intersection numbers are labeled as



 $D_1 \cdot D_2 \cdot D_3 = 1$

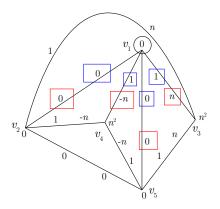
< ∃ >

-

э

Toric threefolds

• The Hirzebruch threefold $\tilde{\mathbb{F}}_n$ (\mathbb{P}^1 over \mathbb{P}^2):



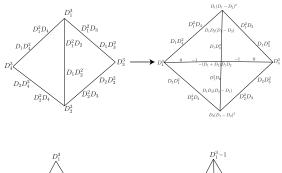
• blue: normal bundle; red: self-intersection of curves

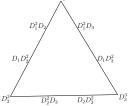
A > 4

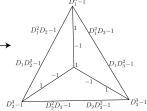
э

< ∃ >

Blow ups







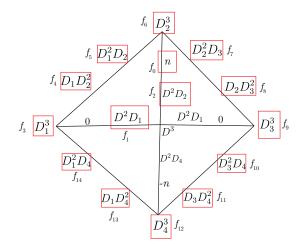
Yi-Nan Wang

- T-

문어 문

Input vector for machine learning

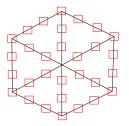
• For divisors $D = \mathbb{F}_n$ (Hirzebruch surface) with 4 neighbors:



13/24

Generation of data set

- Separate divisors according to the number of neighbors *n*: $h^{1,1}(D) = n 2$.
- Compute the triple intersection numbers between divisors. The number of local triple intersection numbers is different for each n



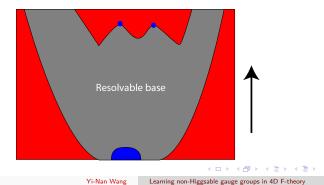
• Compute *f*, *g* and the gauge group on each divisor using toric geometry machinery

伺い イラト イラト

Generation of data set

• We generate our train set from two different set of good bases: (1) The end point bases (Taylor, YNW 17'): start with \mathbb{P}^3 , blow up until one can't; allowing resolvable bases in the process. The end point is always good.

(2) The good bases from random walk (Taylor, YNW 15'): start with \mathbb{P}^3 , do a random blow up/down sequence; do not allow bases with toric (4,6) curves.



• Training set: \mathbb{F}_n on end point bases, ~ 3 million samples.

G	Ø	SU(2)	SU(3)	G ₂	SO(8)	F ₄	E ₈
<i>N</i> (<i>G</i>)	2053638	520783	24	286592	8	66934	4374

- Highly unbalanced; we do a resampling and equalize $N(G) \approx N(G)_{max}/100.$
- On the resampled data set, we separate (train:test)=(0.75:0.25).

イボト イモト イモト 一日

Choosing the machine learning method

Classification method	Accuracy	Training time
Logistic Regression	77.33%	28.6
Decision Tree	99.17%	1.2
Random Forest	99.32%	2.7
Support Vector Machine	97.05%	4.9
Feedforward Neural Network	96.27%	279

• Untrimmed decision tree is the best method in our case:

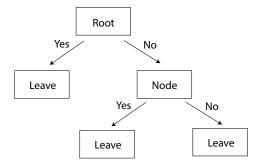
(1) Accuracy as high as random forest

(2) Great interpretability

(3) Fast

• Seems that overfitting does not occur

Decision tree



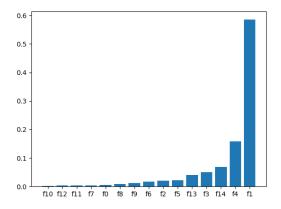
• At each step, we try to split the data set with a feature which maximize

Information gain =
$$I - \frac{N_{left}}{N} I_{left} - \frac{N_{right}}{N} I_{right}$$
, (2)

• I is the Gini index:

$$I = \sum_{i} p_i (1 - p_i), \qquad (3)$$

Feature Importance



• $f_1 = D^2 D_1$ is the most important one.

그는 그

 \bullet For the actual mixed data set from end point bases and other bases, \sim 6,300,170 samples.

• We do a resampling $N(G) \approx N(G)_{max}/10$; (train:test)=(0.75:0.25).

• The decision tree has 66441 nodes and 33221 leaves, and the maximal depth is $d_{\rm max} = 49$.

• The in sample and out of sample accuracies on the resampled data set are 98.22% and 97.79%. On the original set, it is A = 97.86%.

• Generated a lot of analytic rules in terms of inequalities, for example: if $f_1 = D^2 D_1 \le -9$, then the gauge group is E_8 .

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		S(l)	fo	f_1	f_2	f_3	f_4	fs	fe	f13	other f_i	G
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$			-			-	-			-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	4698	-	-6		-	-	≤ 0	-	-	$f_7 \ge 0$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	52528	-	-5	-	-	-	≤ 3	≤ 5	≤ -1	$f_7 \ge 0, f_{12} \le -1$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	4478	-	-5	$-7 \sim -4$	≥ 2	-	≥ 4	≤ 3	≤ -1		F_4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	4285	0	-5			-	≤ 2	≥ 6	≤ -1	$f_7 \ge 0$	F_4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	5680	-	-4	≥ -12	-	$1 \sim 3$					G_2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	4249	-	-4	> -12	> 5	$1 \sim 4$			-	$f_7 > 0$	G_2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	4248	≥ 7	-4		-	3			-		G_2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8		-			-	≥ 6	≥ -5	-	-	$f_{12} \le -1$	
$ \begin{array}{ c c c c c c c c c $	9	42972	-	-3			≤ 2	≥ -5		-	$f_{11} = 0, f_{12} \le -2$	G_2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9		-	-3		-	$3 \sim 5$	≥ -5	≥ 7		$f_{12} \le -1$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	17985	-	-3	-2	≥ 6	$0 \sim 2$	≥ 12	$-4 \sim 2$	-	$f_{12} \ge 0, f_{14} \le -1$	SU(2)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-		≤ -3	-	≥ 7	≥ -5	-	-	$f_{12} \ge 0, f_{14} \ge -2$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	14	8483	-	-3	≥ -12	-	≤ 1	$-5 \sim 11$	-	≤ -2	$f_{12} \ge -1, f_{14} = 0$	G_2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13		≥ 1		≥ -5			≥ -5	≤ 6	-	$f_7 \ge 0, f_{10} \ge 0, f_{12} \le -1$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	16	3536	-	-3	≤ -13	≤ 6	$-7 \sim 2$	$-5 \sim 3$	≥ 10		$f_{11} \ge 0, f_{12} \ge -1$	SU(2)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			≥ 2		$-12 \sim -7$				-	≤ -1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	3230	-	-3	≥ -4	≥ 3		$3 \sim 11$	-	≤ -1	$f_7 \ge 0, f_{10} \ge 0, f_{11} \ge 0, f_{12} \ge -1, f_{14} \ge 0$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12				≤ -3	-	≥ 16	-	-	≤ -1	$f_7 \ge -1, f_8 \le -2$	99.9996% SU(2), 0.0004%ø
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14	11713	≥ 3	-2	≤ -3	-	$14 \sim 51$			≤ -1	$f_7 \ge -1, f_8 \ge -1$	99.94% SU(2), 0.06%Ø
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12	9063	-	-2	≥ -11	≤ 0	$5 \sim 12$	≤ 2	-	≤ -3	$f_{12} \leq -1, f_{14} \leq 0$	SU(2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16		≥ 1	-2	≥ -11			≥ 0	≥ 13		$f_9 \le -2, f_{12} \le -1$	
$ 13 6218 \ge 2 -2 \le -2 -2 \le -1 = -1 = f_7 \ge -1, f_8 \le -2 SU(2) $			-		≥ -11	≥ -18	≤ 4			≤ -3	$f_{10} \ge 0, f_{12} \le -1, f_{14} = 0$	
$ 19 3017 >1 -2 >-11 >1 10 \sim 12 0 \sim 2 8 \sim 12 - f_9 <-2, f_{12} < -1, f_{14} < -1$ SU(2)	13	6218	≥ 2	-2	≤ -2		$14 \sim 15$	-	-	≤ -1	$f_7 \ge -1, f_8 \le -2$	
	19	3017	≥ 1	-2	≥ -11	≥ 1	$10 \sim 12$	$0 \sim 2$	$8\sim 12$		$f_9 \le -2, f_{12} \le -1, f_{14} \le -1$	SU(2)

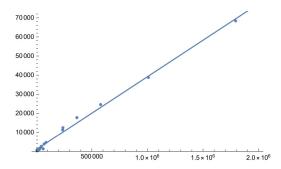
If the rule is simple enough, then it can be derived by formula (Morrison,Taylor 14'):

$$f_k \in \mathcal{O}(-4K_D + (4-k)N_D - \sum_{D \bigcap D_j \neq \emptyset} \phi_j C_{ij}), \qquad (4)$$

$$g_k \in \mathcal{O}(-6K_D + (6-k)N_D - \sum_{\substack{D \cap D_j \neq \emptyset}} \gamma_j C_{ij}).$$
(5)

A Universality

- For each different $h^{1,1}(D)$, train a different decision tree
- $N_{
 m nodes} \propto N_{
 m samples}$



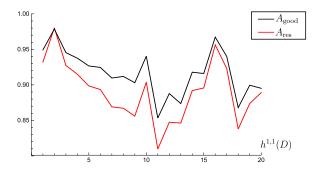
A 10

3 x 3

Applications

(1) Cross-check on resolvable bases

 \bullet The resolvable bases with toric (4,6) curves are generated from random walks starting from \mathbb{P}^3

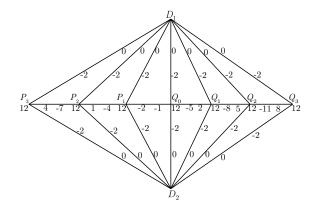


• The decision tree trained from good bases works on resolvable bases as well!

Applications

(2) Constructing local geometric configurations

• Assemble the rules compatible with each other



• An infinite? SU(3) chain with a non-Higgsable SU(3) at each P_n and Q_n