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Physics Summary

* We construct the largest network(s) of string geometries/
vacua to date, where the geometries are connected by
topological transitions (motion in moduli space).

* We argue that such topological transitions correspond to
leading-order vacuum transitions, a la Coleman-De Lucia-
like bubble nucleation.

e Simple models of cosmology using such transitions
provide a notion of vacuum selection, where the network
structure of the geometries plays a major role.



string_data Summary

* Demonstration of interesting physics induced by global
structure of non-trivial network of geometries.

 Decently involved computational effort with networks this
large, in both constructing the network and performing
computations with the adjacency matrix.

* Network has 41,873,645 nodes and 100,036,155 edges.



Outline

The string landscape, bubbles, and networks.
Geometric networks in string theory
Concrete networks of geometries.

Examples of geometry selection.



The String Landscape,
Bubbles, and Networks



The string landscape

e There is a vast landscape of vacua in string theory;
thought to be very large ©(10°%°) (O(107°%), O(10%°°0) , ©(10%72:090))

Ashok, Denef, Douglas Halverson, CL, Sung
Taylor, Wang

e Each yields an 4d effective field theory.

e Vast size of the landscape arises from the plethora of
possible geometries of the extra compact dimensions and
choices of discrete objects on the geometries.



The need for vacuum selection

 Why is our universe is selected?

1. Standard Model might be generic, but this is not established.

see e.g. Grassi, Halverson, Shaneson, Taylor

2. Anthropic principle does not seem be to be the complete story.

3. A (partially) satisfacory explanation: Certain vacua
are selected over others, via some early dynamics in the
landscape.



What does vacuum selection mean?

A few things we know from string theory and effective field theory:

1. There are many vacua, with varying physical properties.

2. Local vacuum transitions, known as bubble nucleation,
can OCCUr. Coleman, De Lucia

3. Bubbles can grow, collapse, nucleate other bubbles.

The vacuum distribution is a late-time, steady state solution of
such a bubble nucleation model. Vacuum selection would be
a distribution that prefers some vacua above others.



Bubble nucleation
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e QOriginal work due to Coleman and De Lucia, in a single
effective field theory.

e Universe starts in false vacuum ¢ , nucleates bubbles in ¢_
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Bubble nucleation and graphs

In general, there can be many vacua.

Given a vacuum i, bubbles in another /
vacuum j can form in local patches.

Bubble nucleation rates 1';; from o

vacuum i to vacuum j depend on @
microphysics.

Picture: \

1. Start in vacuum i.
2. Nucleate a bubble in j.

3. J nucleates a bubble in k, 1 nucleates
another j bubble, and so on.




Bubble nucleation and graphs

The set of vacua 1, and the nucleation rates, define a weighted graph:

A. Nodes are vacua.

B. Edges are bubble nucleation rates.

VZavg

Network is input for a cosmological bubble nucleation model.




A network of vacua

e A great deal of focus on the vacua (nodes) themselves.

e However, the the connections (edges) between the vacua
correspond to tunneling rates. EFT: bubble nucleation will
produce these vacua if the rate is non-zero!

e |n general we cannot just choose a vacuum by hand and
assume it is the end of the story. Need to study the global
cosmological structure to see what vacua are selected!



A Simple Model of Bubble Nucleation

* |ntroduced networks, now we can ask what the network structure
predicts for bubble nucleation models.

e Simplified model of bubble nucleation (assume bubbles do not

collapse). Based on J. Garriga, D. Schwartz-Perlov, A. Vilenkin, and S. Winitzki,
see also D. Harlow, S. H. Shenker, D. Stanford, and L. Susskind

Nj : number of bubbles in vacuum j.

Fij : bubble nucleation rate from vacuum j to vacuum i.

dIN
dt

= I'N




A Simple Model of Bubble Nucleation

dIN
Bubble nucleation determined by o =1I'IN
Solution: N =¢e''Ny = Z apeﬂptvp
p

Ny : initial vacuum numbers

Tp ,Vp :eigenvalues, eigenvectors of I

Up :initial conditions



A Simple Model of Bubble Nucleation

Late time solution:

Let 770, VO largest eigenvalue, eigenvector of |

As t — oo IN is dominated by the largest eigenvector of [°
N — age?vy

However, the entries become infinite as T — 0O

Define the fractional distribution of vacua: P = N/‘N‘

P is well-defined, and independent of initial condition.

A non-trivial distribution in p indicates vacuum selection!

To solve we need to determine [’ in our model, and ensure that the answer makes sense

(i.e. no negative entries in p).



A Better Model of Bubble Nucleation

The last model was a simplified one, designed to capture
interesting dynamics without messy details.

However, it is probably too simple: fails to capture the fact that

a larger bubble has more volume, and therefore can produce
more bubbles.

More realistic model: original one of Garriga, Schwartz-Perlov,
Vilenkin, and Winitzki (GSVW).

This is (very recent) work in progress, so we’ll use the toy
model to demonstrate how the non-trivial network structure
plays a role, and report initial progress using the GSVW model.



The GSVW Model

fj fractional (comoving) volume distribution of jth vacuum

df;

= Z(_K'z’jfj + Kjifi), =T 47TH ‘.

dt p (X] 3
Can be written in matrix notation
df Y
dt = M, Y Y Y " Consistency: requires the
.

presence of terminal vacua!

fit) =% +se?+... Mfy = 0.
p; X Z HlK;08q-
8

S o eigenvector corresponding to least-negative non-zero eigenvalue

We will keep both models in consideration.



Steps for vacuum selection in string
theory:

. Construct the network of vacua in the string landscape.

. Model cosmological evolution using I';; — differential
equation.

. Solve for the largest eigenvector of 1" (or M), which
provides a notion of vacuum selection.

First step: construct the nodes (vacua)
and edges (nucleation rates).



Geometric networks in
string theory



What data defines a metastable vacuum in
string theory?

1. Choice of compact manifold, perhaps with special
holonomy.

2. Choices of objects: flux and branes.

3. Choice of solution to equations of motion.

These are what | would call “typical string vacua”, at least in the
corners of the landscape that we understand best.

These gives the nodes in the network.

In general these vacua are hard to construct explicitly, so we will
consider a coarse-grained toy model: nodes = geometries.



Bubble nucleation between vacua

Transitions between vacua in the landscape seem rather
complicated. One generically expects tunneling between many, if
not all, of the vacua, and the tunneling is outside of the realm of
effective field theory.

However, there is a set of transitions, geometric transitions, that
might play a special role.

These geometric transitions give the geometries a graph structure.

These are completely general in string theory, but to discuss them |
will specialize to F-theory.



F-th eo r'y (see Timo’s talk)

llb with 7-branes, varying axiodilaton.
More general than llb with D7-branes. Allows for strong coupling.

Mathematically described by a Calabi-Yau elliptic fibration over base B,
where B is the internal space.

2 3
Yy =x" + fr+g
Singularities of elliptic fibration specify location and type of 7-brane in B.
A=4f4+27¢°=0

The type of 7-brane determines a gauge theory localized on the 7-brane.
Matter lives at intersections of 7-branes.



A few detalls

* Elliptic fibration parametrized by Weierstrass equation

y° =2’ + f(zi)z + g(z)

f and g are global sections of line bundle:

f €T (O(-4Kp)) g € '(O(—-6Kp))

e Singularities of the elliptic fibration play an important role. The subloci
where the elliptic fiber becomes singular is given by the discriminant locus:

A=4f>+27¢° =0

* Physically, the vanishing of the discriminant marks the location of 7-
branes, which are divisors in B. Let z be a local coordinate where the fiber
becomes singular. The MOV (a, b, c) along z= 0 of (f, g, A\), respectively,
determine, by Kodaira’s classification of singular fibers, a geometric gauge
group, which is some of the data for our physical theory.

f:ZaF g:ZbG A:ZCA



Non-Higgsable 7-branes

Flalb ¢ | Sing. G

Ip [>20[>0 0O [none none

I, |00 |n>2|A,1 SU(n) or Sp(|n/2])

11 [>1] 1 2 | none none

Irr|) 1 (2] 3 Ay SU(2)

IV (22| 2| 4 | A SU(3) or SU(2) .
12 12|23 6 | Dy | SO8) or SO(T) or G | 00
I, | 2|3 [n>27Dn2|SO(2n—-4) or SO(2n->5)

IV 1>3| 4 8 Fi Fe¢ or Fy

II177| 3 [>5| 9 Er Er

I |>4| 5 | 10 Fs

* |In some cases, we may have a > 0 and b > 0 for all choices of
complex structure moduli.
Morrison, Taylor

* The locus z = 0 then has a nhon-Higgsable 7-brane. We say these are
non-Higgsable because the fiber type is independent of complex
structure, and the gauge group therefore cannot be broken/changed by
a complex structure deformation (Higgsing).

Some selective progress: Halverson, Grassi, Morrison, Shaneson, Taylor, Wang



Data for a compactification
NN

Yy

- 1

vV Vvy VvyVY VY

Calabi-Yau Branes Flux

N = 1 effective supergravity in 4d

Many choices for this data gives many vacua. We want to understand the possible transitions
between them.



The numbers

Original estimate of number of flux vacua on a single
. 500
geOmetry. 0(10 ) Ashok, Denef, Douglas

Select geometries can support many more: O(10°7*°°) . wan

On the other hand, there is an explicit lower bound on the
number of geometries (this talk): O(10™°)

Halverson, CL, Sung

Estimate for the actual number is: O(10%%°°) Tayior, wang

There is a large landscape of vacua!



Geometric Transitions

* When 7-branes stack up enough and intersect, a new branch of moduli space
appears.

* Blowing up along this cycle separates the 7-branes, and changes the topology of the

compact directions in space.

* Technically, MOVs(f,g) > (4,6) or MOVp(f,g) > (8,12)
Hayakawa, Wang, Morrison
* This corresponds to a crepant resolution of the corresponding fourfold, and is
therefore motion in Calabi-Yau moduli space.

* This is a topological transition in the extra spatial dimensions, that breaks apart
iInteresting branes.



Base transitions

e Starting with an elliptically fibered Calabi-Yau X -> B, one can crepantly pass to
another elliptically fibered Calabi-Yau X” -> B’ by a base-change, and pass to a
minimal Weierstrass model.

e This procedure is

1. Perform a blowup B’ -> B in the base along a subvariety C and perform a
base change

/ / /
X =XxpB — B
2. Perform a change of coordinates and pass to a minimal Weierstrass model

X” -> B’.
Candelas, Diaconescu, Florea, Morrison, Rajesh

* For this procedure to be crepant we need
MOVa(f,g) > (4,6) if C is a curve in B

MOVa(f,g9) > (8,12) if C is a point in B

* This produces a new elliptic Calabi-Yau X” -> B’, with a new base B’ which is a
blowup of B.



Geometric Transitions

 (Geometric transitions are possible, and we expect them
to happen quantum mechanically via instantons.

* At leading order there is a moduli space M, and the

different geometries correspond to different points/
regions of the moduli space.

 Expectation: Coleman-De Lucia type instanton mediates
between geometries.




Geometric Transitions

e However, the situation is more complicated:

1. The theory is N = 1, so the general expectation is that the moduli space will be
lifted, so the vacua are discrete. This seems to be true in examples.

2. The geometries in general do not correspond to the same effective field theory,
and so the relevant instantons must be a generalization of the usual ones of
Coleman-De Lucia (generalization of distance on field space).

3. The geometries are separated by regions with complicated, non-perturbative
physics (tensionless strings, CFT points).




Modeling |

e To calculate 1’ we need detailed information about the
microphysics.

* In general these vacua are not even in the same effective 4d
field theory, so analysis goes beyond the original Coleman-
De Lucia story.

e Main assumption: the dominant bubble nucleation
process Is between geometries that are directly
connected by a single topological transition.



Motivation for nearby geometries

We want to generalize the Coleman-De Lucia result, which
involves a measure of distance between vacua.

The network structure provides such a distance, somewhat
natural as the network captures motion in moduli space.

Multiple topological transitions require tuning to higher
codimension in moduli space, so we expect nearby geometric
transitions to be preferential.

Pi5 Ps3

P13 ~ P1oPo3

(Before moduli stabilization/quantum effects, these transitions
correspond to motion in moduli space. Finite temperature

(for instance) could allow for such fluctuations to occur
dynamically).



Modeling |’

e Missing information about the vacua themselves: fluxes, vacuum
energies, etc.

e First step will be to isolate how the graph structure affects vacuum
selection, and so we consider a simplified model:

I' = A

' constant that determines overall transition rate

A is the adjacency matrix of the graph: has entry 1
If two geometries are connected, zero otherwise.



The simplified model

I' = A

Let “YO, VO largest eigenvalue, eigenvector of |’

As t — oo IN isdominated by the largest eigenvector of [°
N — age?lvy

Define the fractional distribution of vacua: P = N/‘N‘

In this case, p is the largest eigenvector of the adjacency matrix
of the network, also called the eigenvector centrality of the
network.

Perron-Frobenius theorem: p is strictly positive if A is the adjacency
matrix of a connected graph, so the interpretation as a fractional
vacuum distribution is sensible!



The GSVW Model
YA T ATy
1] i] i] g ri Kij = FZJ?H] :
p; X E HlK;qS54-
o
S ¢ eigenvector corresponding to least-negative eigenvalue

* We want to isolate the effect of the graph structure, so for now set

H,=H=1

 (Consistency requires terminal vacuum, so we assign one
terminal and one non-terminal vacuum per geometry.

* Need to compute smallest-magnitude eigenvalue of A - 2D.

In both models the vacuum selection is determined by some graph property.



Concrete networks of
geometries



Networks of geometries

e Both are ensembles of Calabi-Yau’s associated with toric
varieties. The one we are interested in admit a
combinatorial description as triangulations of polytopes.

1. The Tree ensemble: Calabi-Yau Elliptic fibrations over

toric 3-folds.

2. The hypersurface ensemble: Calabi-Yau \

hypersurfaces in toric 4-folds. 2’ Today

Kreuzer, Skarke

e |n both cases, nodes represent Calabi-Yau geometries,
and edges represent blowups between the geometries.



Toric combinatorics

Toric varieties are combinatorial: they admit a description in
terms of a fan of rational polyhedral cones.

Each ray of the fan v; corresponds to a homogeneous (toric)
coordinate x; and therefore each ray corresponds to a divisor

n-dimensional cones then correspond to T
codimension-n subvarieties, by
setting the corresponding

toric coordinates to zero.

2 ' B
Example: [P /




Toric varieties and polytopes

e Some fans correspond to face fans of triangulations of boundaries of
reflexive polytopes. Such reflexive polytopes give a rich class of toric
varieties.

Batyrev, Kreuzer, Skarke

A fine, regular, star triangulation (FRST) of a 3d reflexive polytope
corresponds to a smooth projective toric 3-fold.

 These toric varieties are weak Fano toric varieties (WFTV), and the
generic CY 4-fold elliptic fibrations over them are smooth, which implies
there are no non-Higgsable 7-branes, and no gauge groups generically.

* There are 4319 3d reflexive polytopes, and ~10715 triangulations total,
and so these are a rich class of toric threefolds.

Halverson, Tian, Carifio, Kriokov, Nelson



1.

The Tree Ensemble

Halverson, CL, Sung

Start with a weak Fano toric 3-fold base, corresponding
to a triangulated 3d reflexive polytope. Defines a Fan
with rays v; .

Blowup subvarieties to reach a new toric base.
Combinatorially described by adding new ray v, to the
fan, corresponding to a new exceptional divisor D...

Ve — E a;v;
1



The Tree Ensemble
Ve — Z a,;v;

e Define the height of ablowupas h = Z a;

(

* In general, can blow up along

1. Toric curves <—> edges in the triangulated polytope.

s | Growing a tree above the edge!
’ Disclaimer: not a graph theory tree.

2. Toric points <—> faces (triangles) in the triangulated polytope.



The Tree Ensemble

* Jo visualize, it’s easier to project all rays back onto the
polytope, so ‘growing a tree’ corresponds to subdividing
edges and faces.




The Tree Ensemble

e (Calabi-Yau elliptic fibrations over these bases form a connected
moduli space, related by topological transitions, if a technical
condition is satisfied, which is

MOVD@ (g) < 6 or MOVDe (f) < 4 Hayakawa, Wang

* A sufficient condition to ensure that each Calabi-Yau is connected
iINn moduli space limits the possible blowups in a given
local patch to a finite set, rendering the ensemble finite.

]\40‘/1)e (g) < 0 & h(?]e) S 6 for all Ve Halverson, CL, Sung

* The topological transitions give this ensemble a network structure:
geometries are nodes, and topological transitions are edges.



Factorizing blowups

* Easiest to describe in combinatorial language with a
picture. Consider this FRST of a face of a 3d reflexive
polytope, and the following observation about toric

blowups: /

Subdivision internal to a face (2-simplex) DOES /
L - m
respect original FRST of polytope!

Subdivision of edges does not respect

original FRST of polytope. ———————————————l-

e |f we first consider sequences of subdivisions (blowups)
internal to each face on the original triangulation, then we
can perform such blowups without affecting the toric fan
elsewhere, and so can work locally with each face. We can
then subdivide each edge, corresponding to blowups of

toric curves.



The Edge Network Npg

* First consider blowup of curves. Toric curves correspond to edges
in the triangulation.

e A single toric curve, corresponding to an edge in the
triangulation, admit 82 configurations of blowups.

These configurations form a network Vg with 82 nodes and
1386 edges.



The Face Network Npg

A toric point corresponds to a triangle in the triangulation.

These configurations form a network Nz with 41,873,645
nodes and 100,036,155 edges.



The Tree Network

Ensemble of tree geometries overwhelmingly generated by
blowups of toric varieties corresponding to two reflexive
polytopes with the most edges and triangles.

Each has 108 toric curves (edges) and 72 toric points (triangles) when
triangulated.

2.96

[Sac| = x 107 |Sae|=2.96x 107"
1 2

3



The Tree Network

e A generic network with 107°° nodes would be completely
intractable, but this network factorizes into a cartesian product of
graphs:

m (1, U;3) (14, V5) (1), W)

° . . .
ll: \'2 M
L . 4 .
V]
o ¢ ® ®
(V). Uy) (V). V2) (Vy, W)
(r (5 G, UG,
Wolfram

Cartesian product =




The Tree Network

* The tree network /Vi,.factorizes as

108 72
Ntree — NE NF

e Simply put, two geometries in the Cartesian product are adjacent if
they are related by a single blowup in a single local patch.

By understanding Ny and Ny we can learn about Vi .. !



Universality

e Enormous number of geometries, too many to scan.

e However, understanding the construction algorithm allows
us to read off the minimal geometric gauge group in terms
of simple combinatorial data, with probability > (0.999995

G> E’ x B8 x U? x Fj2 x G x AT U € {G2,Fy, Es}
rk(G) > 160+ 4H, + 2H3 + Hy

Hs, Hs, H, are number of height 2,3,4 blowups.

There actually are, definitively, over 107500 string geometries.
and we have an exact lower bound.

We can actually control this ensemble, through precise knowledge of the
construction algorithm.



Strong Coupling

* Non-Higgsable clusters, so generic points in moduli space are
strongly coupled. Do any of these geometries admit a Sen limit?

* |n recent work, we worked out requirements for the existence of a
Sen limit in the following cases:  Halverson, CL, Sung

1. Toric bases.

2. Algebraic bases constructed from gluing local patches, where
the local patches are crepant resolutions of orbifold
singularities.

* Applied to the tree ensemble, the fraction that admits a Sen limit is
3 % 107391 (See Jim’s talk)

Not only do generic points in moduli space have strong coupling points,
but all subloci do as well!



Examples of geometry
selection



The Simplified Model

* We will look at the simplified cosmological model for
now, as the GSVW model is in progress.

Recall Niyee = Nz 108 N 2

A useful fact is that p(Niree) = P(NE)?'® @ p(INp)®™

We therefore need to calculate P(NE) , P(NF)
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P(NF)

Largest entry is 0.07, 98 percent of the entries are at least a factor of
1000 smaller. Ratio of largest to smallest is ~ 107



The Simplified Model #

NE amuch smaller, less iInteresting network, but still a non-flat distribution.

Full tree network: Ratio of largest to smallest eigenvector centrality ~

7 x 1007

This Is a measure of maximal geometry selection in the tree
network.

While it is a toy model, it is a coarse grained toy model of actual huge
string networks!

Main lesson: non-trivial graph structure in networks of F-theory geometries
gives rise to geometry selection in a simple bubble nucleation cosmology.



Physics of the selected node

Selected node in NF :

GQ X (SU(Q))S

Full tree network: 757 x 5% x G220 x SU(2)3%°



The GSVW Model

107 4

106g

Mz’j — Iiz‘j - dij Z Ropj.
- T

105-5
‘ 47
1 o 3

-| . P06 2 Hithete
x

0.000 0.001 0.002 0.003 0.004 0.005 0.0'06 0.(507
P(NF)
S o eigenvector corresponding to least-negative eigenvalue

— i =1 H4

104§

|
|
|
e
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Full tree network: Ratio of largest to smallest eigenvector centrality ~

101555



Recap

The landscape of string vacua naturally has a network
associated with it: nodes = vacua, edges = bubble
nucleation rates.

Introduced large networks of string geometries.

We considered a toy model for vacuum selection using
network science that can give rise to large selection factors,
and we demonstrated that is does in concrete geometric
networks.

GSVW model is standard model for bubble nucleation, still
has large selection factors from network structure!



Work In progress

 Consider a distribution of Hubble constants/CCs on each
geometry, allow for multiple vacua per geometry, estimate
using flux/geometric techniques.

* Allow for the graph to be weighted via flux vacua estimates.



Musings

Ways to to move away from the toy regime: fluxes, mobile
branes, vacuum energies.

Transitioning between vacua in string theory interpolates
between different effective field theories, important to
understand better.

Dynamics of geometric transitions and relevant instantons
need to be calculated.

Would be interesting to expand the graphs (non-toric,
etc.).



Thanks!



