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▶ The Belle II experiment
▶ History
▶ B-factories
▶ Expectations

▶ ML in analysis
▶ Continuum suppression
▶ Full event reconstruction

▶ ML in hardware
▶ Z-vertex trigger

▶ Challenges
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▶ Collaboration formed in 2009 following
success of Belle experiment:

▶ Confirmed Kobayashi–Maskawa–mechanism
(Nobel prize 2008).

▶ UT parameters, heavy flavour spectroscopy,
CPV, rare B decays, etc.

▶ New physics searches (Sources of CPV,

(semi–)leptonic decay, LFV, etc.)

▶ Still tensions in SM and big unanswered

questions

▶ Current standing:
▶ 700+ Members, 106 institutes, 25 countries
▶ First calibration data: 2018
First analysis data: 2019
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Two approaches for HEP:

1. Energy frontier (direct search):
▶ Powerful enough to produce new particles
directly. (LHC)

2. Precision frontier (indirect):
▶ Focus on specific energy range. (Belle II)
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Two approaches for HEP:

1. Energy frontier (direct search):
▶ Powerful enough to produce new particles
directly. (LHC)

2. Precision frontier (indirect):
▶ Focus on specific energy range. (Belle II)

Unique advantages to B-factory:

▶ Clean environment from 𝑒+𝑒− - no partons
▶ Precise knowledge of initial energy

▶ Ability to directly measure branching

fractions

▶ Missing energy searches
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The Belle II Experiment
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Asymmetric 𝖾+𝖾−
experiment mainly at

the Υ(4𝑆) resonance
(10.58GeV)

Focus on 𝖡, charm and

𝜏 physics
KEKB/Belle SuperKEKB/Belle II

operation 1999–2010 2018–

peak luminosity 2.11 × 1034 cm−2s−1 8 × 1035 cm−2s−1

integrated luminosity 1 ab−1 (772 million BB̄ pairs) 50 ab−1
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Goal of Belle II / SuperKEKB

9 months/year
20 days/month

Calendar year

▶ Peak instantaneous luminosity:

8 × 1035𝑐𝑚−2𝑠−1
(Belle: 2.11 × 1034𝑐𝑚−2𝑠−1)

▶ Total integrated luminosity:

50𝑎𝑏−1
(Belle: 1𝑎𝑏−1)

Process 𝜎[𝑛𝑏] No. events [×109]

𝐵𝐵̄ 1.1 55

𝑞𝑞̄ 2.52 185.45
𝜏+𝜏− 0.92 45.95
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electron (7GeV)

positron (4GeV)

KL and muon detector:
Resistive Plate Counter (barrel)
Scintillator + WLSF + MPPC (end-caps)

Particle Identification
Time-of-Propagation counter (barrel)
Prox. focusing Aerogel RICH (fwd)

EM Calorimeter:
CsI(Tl) (barrel), Pure CsI (end-caps), 
waveform sampling

Vertex Detector
2 layers DEPFET + 4 layers DSSD

Beryllium beam pipe
2cm diameter

Central Drift Chamber
He(50%):C2H5(50%), Small cells,
long lever arm, fast electronics
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DAQ

Event Generation Detector Simulation

MDST Analysis
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Υ(4𝑆)
𝑒−

7 GeV

𝐵̄0

𝐵0

𝐷̄0

𝜈𝜇

𝜋−

𝐾+

𝜋−

𝜇+ Flavour tagΔ𝑧 ∼ 130𝜇𝑚

𝜇+

𝜇−
𝐽/Ψ

𝐾𝑆

𝜋−

𝜋+

𝑒+

4 GeV

Boost factor 𝛽𝛾 = 0.28

√𝑠 = 10.58 GeV

(0.425 at Belle)

Traditional analysis procedure:

1. Reconstruct signal side

2. Cut-based selection

3. Continuum Suppression

4. Tag side reconstruction

5. Fitting
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Standard toolset available to users:

▶ Neurobayes
▶ Developed by phi-t at KIT
▶ First use of neural networks
▶ Deprecated

▶ FastBDT
▶ Modified boosted decision tree
▶ Robust against overfitting

▶ Tensorflow/Keras
▶ Newly implemented in Belle II
▶ Integrated within software framework
▶ Requires no extra dataset preparation
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Standard toolset available to users:

▶ Neurobayes
▶ Developed by phi-t at KIT
▶ First use of neural networks
▶ Deprecated

▶ FastBDT
▶ Modified boosted decision tree
▶ Robust against overfitting

▶ Tensorflow/Keras
▶ Newly implemented in Belle II
▶ Integrated within software framework
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Layer 1 x < 3

Layer 2 y < 1 z < 4

Layer 3 x < 1 z < 5 x < 9 y < 2

Terminal Nodes 0.1 0.2 0.3 0.8 0.4 0.7 0.5 0.9
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What is Continuum?

Spherical Jet-like

𝑒+𝑒− → Υ(4𝑆) → 𝐵𝐵̄

𝑒+𝑒− → 𝑞𝑞̄

▶ Continuum biggest background in many analyses

▶ Utilise kinematics to suppress

▶ Specialised tool and variables developed
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Established Method

1. Reconstruct 𝐵0
𝑆𝑖𝑔𝑛𝑎𝑙 candidate

2. Collect remaining event

3. Construct high level variables

4. Belle: Neurobayes

Belle II: FastBDT

CleoCones

h+

h-

KSFW Variables

▶ Fox Wolfram moments

▶ Calculated on primary daughters

Thrust axis

Compare 𝐵𝑆𝑖𝑔𝑛𝑎𝑙 to 𝐵𝑇𝑎𝑔 flight directions
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New Approach

▶ Use direct detector information
▶ Tracks in drift chamber
▶ Energy deposits in ECL

▶ Information on 10 highest momenta:
▶ Momentum vector
▶ Particle ID
▶ Uncertainties

▶ 200 low level variables
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New Approach

▶ Use direct detector information
▶ Tracks in drift chamber
▶ Energy deposits in ECL

▶ Information on 10 highest momenta:
▶ Momentum vector
▶ Particle ID
▶ Uncertainties

▶ 200 low level variables

▶ Train on 1𝑀 MC events:
▶ 50% 𝐵 → 𝐾0

𝑆𝜋0

▶ 50% continuum

▶ 10% for validation

▶ 3 different set of variables for training:
▶ H: High Level variables from the established
method

▶ L: Low Level variables from the new approach
▶ L+H: combination of the 2 sets

▶ 4 hidden layers: 180, 120, 60, 30
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Results
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1D. Weyland, “Continuum Suppression with Deep Learning techniques for the Belle II Experiment”, MA thesis (KIT, Karlsruhe,
ETP, 2017-11-02)
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▶ Unique ability of B-factories

▶ Necessary for missing energy searches
▶ 𝐵 → 𝐾𝜈𝜈
▶ 𝐵 → 𝐷∗∗ℓ𝜈
▶ 𝐵 → 𝜏𝜈

▶ Hierarchical reconstruction (Neurobayes)

▶ Used in 𝑅(𝐷∗) measurement hadronic tag:

ℛ(𝐷(∗)) =
ℬ (𝐵̄ → 𝐷(∗)𝜏−𝜈̄𝜏)
ℬ (𝐵̄ → 𝐷(∗)ℓ−𝜈̄ℓ)

▶ Fit to remaining energy in detector:

𝐸𝐸𝐶𝐿 = 𝐸𝑡𝑜𝑡 − 𝐸𝑟𝑒𝑐

tag side signal side

t
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1I. Adachi et al., “Measurement of B —> D(*) tau nu using full reconstruction tags”, in Proceedings, 24th International
Symposium on Lepton-Photon Interactions at High Energy (LP09): Hamburg, Germany, August 17-22, 2009 (2009)

http://inspirehep.net/record/834881/files/arXiv:0910.4301.pdf
http://inspirehep.net/record/834881/files/arXiv:0910.4301.pdf
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▶ New in Belle II

▶ Same hierarchical reconstruction method

▶ Use FastBDT, added many more decay

modes, improved efficiency

▶ Repeat previous measurements with

improved results

1T. Keck, The Full Event Interpretation, personal communication
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Figure: 𝐵0
1T. Keck, The Full Event Interpretation, personal communication
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DAQ

Event Generation Detector Simulation

MDST Analysis
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CDC



Z-Vertex Trigger

James Kahn Machine Learning at Belle II 20 / 31April 2018



Z-Vertex Trigger
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input: CDC hits

Central Drift Chamber
14336 sensewires
56 layers

stereo layer

x

y

z

4 stereo super layers

axial layer

x

y

z

5 axial super layers

cells of sense wires
and field wires

rdrift ∝ tdrift

MC hits

background



Z-Vertex Trigger

James Kahn Machine Learning at Belle II 21 / 31April 2018

▶ Need to suppress non-event
backgrounds:

▶ Intra-beam interactions
(Touscheck scattering)

▶ Scattering from residual beampipe
gas

▶ Want to discriminate between real

events and machine background

▶ First step: Track segment finder

▶ Second step: 2D track finder
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1S. Pohl, The Belle II z-Vertex Trigger, sneuhaus@mpp.mpg.de
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𝛼

Δ𝜑

±𝑡drift
9×

SL
0

SL 8

SL 1
– 7

𝜃
𝑧

27 inputs 𝑥𝑖

127 hidden nodes

𝑦𝑗 = tanh∑𝑖 𝑥𝑖𝑤𝑖𝑗

2 output nodes

𝑧𝑘 = tanh∑𝑗 𝑦𝑗𝑤𝑗𝑘

weights 𝑤𝑖𝑗, 𝑤𝑗𝑘
trained with

backpropagation

hit candidates:

Δ𝜑 region
time window

hit selection:

left/right

short time

▶ Crossing angle 𝛼: track curvature
▶ Missing axial hit: default inputs (0,0,0)

▶ Missing stereo hit: expert network

1S. Pohl, The Belle II z-Vertex Trigger, sneuhaus@mpp.mpg.de
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▶ Currently trained on MC

▶ Single hidden layer feed-forward network

▶ First tests performed on cosmic ray

backgrounds

▶ Achieved resolution of 𝒪 (1𝑐𝑚)

▶ Mid 2018 calibration data collected
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▶ Strong understanding of systematics essential

in HEP

▶ Begins with accurately representative

simulations

▶ First step is recalibration according to

detector response

▶ Currently no collision data→ phase 2

▶ First attempt at systematics estimation

submitted

(Preprint: arXiv:1803.08782)

(github.com/stwunsch/tensorflow_
derivative)

Eur.Phys.J . C74 (2014) 3026

Belle

Momentum (GeV/c)
0 1 2 3 40

0.2

0.4

0.6

0.8

1

Kaon efficiency (data)
Kaon efficiency (MC)
Pion mis-ID (data)
Pion mis-ID (MC)E

ffi
ci

en
cy

Figure: Kaon identification, 𝐷∗+ → 𝐷0(→ 𝐾−𝜋+)𝜋+

github.com/stwunsch/tensorflow_derivative
github.com/stwunsch/tensorflow_derivative


Challenges

James Kahn Machine Learning at Belle II 24 / 31April 2018

▶ Strong understanding of systematics essential

in HEP

▶ Begins with accurately representative

simulations

▶ First step is recalibration according to

detector response

▶ Currently no collision data→ phase 2

▶ First attempt at systematics estimation

submitted

(Preprint: arXiv:1803.08782)

(github.com/stwunsch/tensorflow_
derivative)

Momentum (GeV/c)
0 1 2 3

E
ffi

ci
en

cy

0.6

0.7

0.8

0.9

1

Data

MC

Eur.Phys.J . C74 (2014) 3026

Belle
cos(θ)>0.5

Figure: Proton identification, Λ → 𝑝𝜋−

github.com/stwunsch/tensorflow_derivative
github.com/stwunsch/tensorflow_derivative


Challenges

James Kahn Machine Learning at Belle II 24 / 31April 2018

▶ Strong understanding of systematics essential

in HEP

▶ Begins with accurately representative

simulations

▶ First step is recalibration according to

detector response

▶ Currently no collision data→ phase 2

▶ First attempt at systematics estimation

submitted

(Preprint: arXiv:1803.08782)

(github.com/stwunsch/tensorflow_
derivative)

]2p [GeV/c
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
ffi

ci
en

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K (MC)
(MC)π

K (truth)
(truth)π

Belle II

Figure: Kaon identification

github.com/stwunsch/tensorflow_derivative
github.com/stwunsch/tensorflow_derivative


Challenges

James Kahn Machine Learning at Belle II 24 / 31April 2018

▶ Strong understanding of systematics essential

in HEP

▶ Begins with accurately representative

simulations

▶ First step is recalibration according to

detector response

▶ Currently no collision data→ phase 2

▶ First attempt at systematics estimation

submitted

(Preprint: arXiv:1803.08782)

(github.com/stwunsch/tensorflow_
derivative)

github.com/stwunsch/tensorflow_derivative
github.com/stwunsch/tensorflow_derivative


Summary

James Kahn Machine Learning at Belle II 25 / 31April 2018

▶ Belle II beginning operation this year - calibration

▶ Data taking to begin in 2019

▶ Machine learning implemented in collaboration-wide tools

▶ BDTs already used

▶ Neural networks beginning to be implemented throughout

▶ Investigation into systematics propagation ongoing
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BACKUP



B-Factory
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Results
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DNN(E+DL+V)   0.9977

BDT(E+DL+V)   0.9974

DNN(E+DL)   0.9950

BDT(E+DL)   0.9940

DNN(E)   0.9776

BDT(E)   0.9664
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▶ Introduced by CLEO collaboration in 1996

▶ Cones distributed in steps of 10deg
▶ Measure momentum flow into concentric areas around thrust axis
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