Recent progress in understanding ultra-high-energy cosmic rays

Ralph Engel, for the Pierre Auger Collaboration Karlsruhe Institute of Technology (KIT)

Physics of ultra-high-energy cosmic rays (UHECRs)

⁽Kotera & Olinto, ARAA 2011)

Propagation of UHECR (including mag. fields)

Particle physics beyond the reach of colliders

QCD: ~ $E^{-1.5}$ energy spectrum QCD+SUSY: ~ $E^{-1.9}$ spectrum

Space-time properties (LIV)

UHECRs – how to get them to Earth

(Bergmann et al., PLB 2006)

Global picture – energy density & multi-messenger physics

The multi-messenger view at highest energies

Question 3: What are the sources of ultra-high-energy cosmic rays?

Status of the field 12 years ago – particle flux

(RE, Nijmegen Summer School, 2006)

(fluorescence telescopes)

- **Composition: protons ?**

(RE, Nijmegen Summer School, 2006)

Building and operating a big observatory ...

MAGIC, H.E.S.S., IceCube, Auger – similar time scales

(24+3 telescopes in total)

Fluorescence telescopes

Life B

felen to a faire

Particle detectors 10 m² area, 1.20 m high 12 tons of water

UV transmitting filter, corrector lens, safety curtain PMT camera with 440 pixels, 1.5° FoV per pixel, 10 MHz

> 3.4 m segmented mirror (aluminum alloy, glass)

Telescope Array (TA)

Middle Drum: based on HiRes II

Northern hemisphere: Utah, USA

Talk by Abu-Zayyad

Pierre Auger Observatory and Telescope Array

Telescope Array (TA) Delta, UT, USA

507 detector stations, 680 km² 36 fluorescence telescopes

HiRes I (mono) ~ 5 x 10^3 km² sr yr @ 10^{20} eV AGASA: $1.6 \times 10^3 \text{ km}^2 \text{ sr yr}$

Pierre Auger Observatory

Province Mendoza, Argentina 1660 detector stations, 3000 km² 27 fluorescence telescopes

Auger:

Together full sky coverage

6.7 x 10⁴ km² sr yr (spectrum) 9 x 10⁴ km² sr yr (anisotropy)

TA:

8.1 x 10³ km² sr yr (spectrum) 8.6 x 10³ km² sr yr (anisotropy)

UHECRs: How to detect them

HL 1: The flux is strongly suppressed for $E > 10^{19.6} eV$

Events per year (based on AGASA spectrum)							
	SD only	SD + ≥1 FD					
> 6 x 10 ¹⁷ eV	0	45000					
> 10 ¹⁸ eV	0	30000					
> 3 x 10 ¹⁸ eV	15000	4700					
> 10 ¹⁹ eV	5150	515					
> 2 x 10 ¹⁹ eV	1590	159					
> 5 x 10 ¹⁹ eV	490	49					
> 10 ²⁰ eV	103	10					
> 2 x 10 ²⁰ eV	32	3					
> 5 x 10 ²⁰ eV	10	1					
 FD *2 tanks with 4 VEM and 10% duty cycle SD *5 tanks with each 4 VEM 							
zenith angle >60°: + 50%							

(RE, Nijmegen Summer School, 2004)

 $^{-1}\,\mathrm{yr}^{-1}$ $E^{3}J(E)/(eV^{2} \text{ km}^{-2} \text{ sr}^{-1})$

Expected 1100, have now 14 events

 $\Delta E/E = 14\%$ Auger

Energy spectrum: comparison with theory predictions

Directional dependence of flux (energy spectrum) ?

(Auger-TA Spectrum Working Group)

Are the energy spectra consistent with each other?

Better agreement if only common declination band considered – anisotropy ?

Composition from longitudinal shower profile

Change of model predictions thanks to LHC data

 $\Delta X_{\rm max} = -10 \, {\rm g/cm^2} + 8 \, {\rm g/cm^2}$ Sys. X_{max} uncertainty Auger: $\Delta X_{\rm max} = \pm 20 \,{\rm g/cm^2}$ TA:

post-LHC models

(Pierog, ICRC 2017)

LHC-tuned models should be used for data interpretation

-	-	-	-	-	-	
						-
						-
-	•	-	-	-	-	-
						-
						-
	-	•		-		-
	-	-	-	-	-	
						-
						-
-	-	-	-	-	-	-
						-
-	•	•	•	•	-	-
						-
						-
-	-	-	-	-	-	
						-
						-
-	-	-	-	-	-	-
						_
						-
						-
-		-	-	-	-	-
						-
						-
-	-	-	-	-	-	-
1						-
-	-	-	-	-	-	-
						-
						j
			- 1			1111
						-
-	-	-	-	-	-	
						-
	_	_	_	_	_	

Mass composition at sources (model dependent)

(Wittkowski ICRC 2017)

Results for different model scenarios (CRpropa), m=0

Source properties	4D with EGMF	4D no EGMF	1D no EGMF
γ	1.61	0.61	0.87
$\log_{10}(R_{\rm cut}/{\rm eV})$	18.88	18.48	18.62
f _H	3 %	11 %	0 %
f _{He}	2 %	14 %	0 %
<i>f</i> _N	74 %	68 %	88 %
<i>f</i> _{Si}	21 %	7 %	12 %
f _{Fe}	0 %	0 %	0 %

Suppression of flux dominated by maximum injection energy

Very hard index of power law at injection

Mainly primaries of the CNO and Si group injected, no Fe, very little p, p produced by spallation

HL 3: The UHE photon and neutrino fluxes are very small

Inclined showers & UHE neutrinos

- Protons & nuclei initiate inclined
- showers high in the atmosphere.

Shower front at ground:

- mainly composed of muons
- electromagnetic component absorbed in atmosphere.

Neutrinos can initiate "deep" showers close to ground.

 Shower front at ground: electromagnetic + muonic components

Searching for neutrinos ⇒ searching for inclined showers with electromagnetic component

 v_{τ} flatlevor EaEtart&kSkimimin(9(99,99595°) contributo totaltel/evatete37%%

owers trinos

- itiate inclined atmosphere. ound:
- ed of muons
- c component nosphere.
- ite "deep" ound.
- und:
- nuonic
- utrinos ⇒ ed showers c component
- ed showers
- c component

ger Observatory

 $a_{all v}$ flavor

Low zenith (65°,75°) ^C contrib. to total evt rate: 23% ^H High zenith (75°,90°): ^C contrib. to total evt rate: 4%

MAGIC (APP 102, 2018)

HL 4: The Auger Observatory is a go

(Zas, ICRC 2017)

Auger Observatory as multi-messenger detector

ApJL (2017), special issue (70 collaborations)

HL 5: Very small anisotropy observed at very high energy

Transition from galactic to extragalactic cosmic rays

HL 6: Intermediate-scale anisotropy at highest energies

Ursa Major Cluster (D=20Mpc)

Virgo Cluster (D=20Mpc)

> Centaurus Supercluster (D=60Mpc)

> > *Huchra, et al, ApJ, (2012)* Dots : 2MASS catalog Heliocentric velocity <3000 km/s (D<~45MpC)

Perseus-Pisces Supercluster (D=70Mpc) Eridanus Cluster (D=30Mpc)Fornax Cluster

Anisotropy – Correlation with catalogs (Auger data)

Starburst galaxies

Model Excess Map - St

NGC1068

30

20

10

0

-10

events per beam **NGC 253 2.5 Mpc**

NGC 1068 16.7 Mpc

Residual Map - Starburst galaxies - E > 39 EeV

AGNs

(Giaccari ICRC 2017)

Hints for sources or source regions?

~ 3 σ Jonathan Biteau | MIAPP | Page 11/14

⁽Auger, ApJL 853, 2018)

HL 7: Proton-proton interactions "normal" up to 50 TeV c.m.s.

(Auger PRL 109, 2012; Telescope Array PRD 92, 2015)

$$\frac{\mathrm{d}P}{\mathrm{d}X_1} = \frac{1}{\lambda_{\mathrm{int}}} e^{-X_1/\lambda_{\mathrm{int}}}$$

 $\sigma_{\rm p-air} = \frac{\langle m_{\rm air} \rangle}{\lambda_{\rm int}}$

Difficulties

- mass composition
- fluctuations in shower development (model needed for correction)

HL 7: Proton-proton interactions "normal" up to 50 TeV c.m.s.

(Auger PRL 109, 2012; Telescope Array PRD 92, 2015)

$$\frac{\mathrm{d}P}{\mathrm{d}X_1} = \frac{1}{\lambda_{\mathrm{int}}} e^{-X_1/\lambda_{\mathrm{int}}}$$

 $\sigma_{\mathrm{p-air}} = rac{\langle m_{\mathrm{air}}
angle}{\lambda_{\mathrm{int}}}$

- mass composition
- fluctuations in shower development (model needed for correction)

HL 8: Muon discrepancy in air showers & particle physics

Conclus type of the second sec

- Complicated and unexpected picture of UHECR emerging (More composition and anisotropy data needed)
- Source models have to be more sophisticated than simple power laws (environment+escape, local large-scale structure, different sources)
- We seem to start seeing at anisotropic sky (composition at highest energies matters)
- Multi-messenger data key for making progress
- Further progress in modeling hadronic interactions τa required for reliable composition studies dN/dlgE (LHC data for p-nuclei needed) C
- Upgrade of Auger Observatory and TA $_{10^2}$

17.5 20.5 20 18 18.5 19.5 19 lg(E/eV)

 $1 \le A \le 2$

 $3 \le A \le 6$ $7 \le A \le 19$ $20 \le A \le 40$ $40 \le 6$

γ_{ini} = **-1.00** f(28) = 1.0e + 00 $lg(E_{max}^{p}/eV) = 18.5 \pm 0.008$ $lg(R_{esc}^{Fe19}) = 2.44 \pm 0.01$ $\delta_{esc} = -1.00$ $f_{gal} = 0.558 \pm 0.01$ $\gamma_{gal} = -4.18 \pm 0.03$ $lg(E_{max}^{gal}/eV) = 19.0$ $f_{noPhot} = 0.00$ $\dot{\epsilon}_{17.5} = 8.2e + 44 \frac{\text{erg}}{\text{Mpc}^3 \text{ yr}}$ $\epsilon_0 = 0.05 \text{ eV}$ α**=2.5**, β**=-2** $\Delta IgE_{sys} = 0, n_{sys}(X_{max}) = 0 \sigma$ χ^2 /ndf = 502.018/62

Upgrade of Auger Observatory: AugerPrime

100% duty cycle

- Scintillators (3.8 m²) on top of each array detector
- Composition measurement up to 10²⁰ eV
- Composition selected anisotropy
- Particle physics with air showers

(AugerPrime design report 1604.03637)

Production and shipping of upgrade detectors in full swing

Karlsruhe (standard loading)

Production sites

Nijmegen (Netherlands) Lecce (Italy)

First container: 25 Apr 2018 in Malargue

TAx4 Project

TA SD (~3000 km²): Quadruple area

Approved in Japan 2015

500 scintillator SDs

2.08 km spacing

3 yrs construction, first 173 SDs have arrived in Utah for final assembly, next 77 SD to be prepared at Akeno Obs. (U.Tokyo) 2017-08 and shipped to Utah

2 FD stations (12 HiRes Telescopes)

Approved US NSF 2016

Telescopes/electronics being prepared at Univ. Utah

Site construction underway at the northern station.

Get 19 TA-equiv years of SD data by 2020

Get 16.3 (current) TA years of hybrid data

(Kido, Matthews ICRC 2017)

