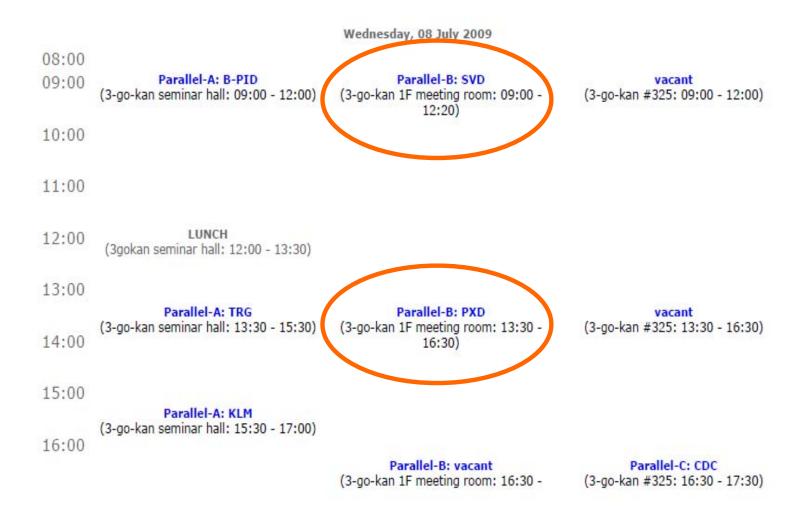
News from the KEK Meetings

Belle-II General Meeting

7.-9. July

New Belle-II Spokesperson:


Opening remarks

Peter Križan *University of Ljubljana and J. Stefan Institute*

3nd Open collaboration meeting, July 7, 2009

Tuesday, 07 July 2009

Status of SuperKEKB Design: Lattice and IR

Strategy of Nano beam

Smaller σ_v^* provides higher luminosity.

Smaller β_y^* provides smaller σ_y^* , however longer σ_z is OK. (less HOM, no CSR)

Hourglass (H.G) condition requires smaller σ_x^* , namely smaller β_x^* is necessary.

Smaller beam-beam parameter is preferable, so ϵ_y should be smaller in proportional to β_v^*

Small β_x^* , β_y^* and small emittance is required.

Requirement: 8x10³⁵ cm⁻²s⁻¹

"Nano beam scheme" LER/HER
$$\epsilon_x = 2.8 \text{ nm} / 2.0 \text{ nm}$$

$$\beta_x^* = 17.8 \text{ mm} / 25 \text{ mm}$$

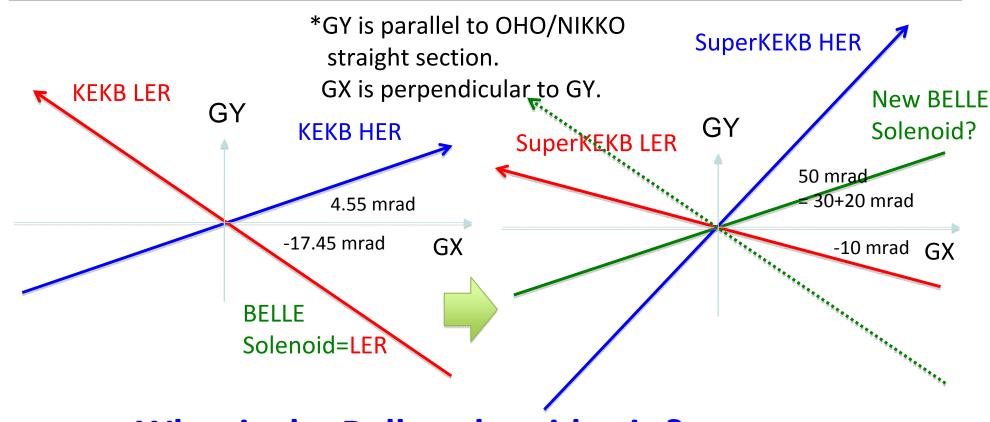
$$\beta_v^* = 0.26 / 0.26 \text{ mm}$$

$$\xi_{y} = 0.079 \sim KEKB$$

7

Machine parameters

Tentative parameters:


		LER	HER	
Emittance	ϵ_{x}	2.8	2.0	nm
Coupling	$\varepsilon_{\rm y}/\varepsilon_{\rm x}$	0.74	1.80	%
Horizontal beta at IP	${eta_{x}}^{\star}$	17.8	25.0	mm
Vertical beta at IP	${eta_{y}}^{\star}$	0.26	0.26	mm
Horizontal beam size	$\sigma_{x}^{\;*}$	7.06	7.07	μ m
Vertical beam size	$\sigma_{y}^{\;*}$	0.073	0.097	μ m
Bunch length	σ_{z}	5 30		mm
Half crossing angle	ф			mrad
Beam Energy	E	3.5	8.0	
Beam Current	1	3.84	2.21	A
Number of bunches	n_b	2252		
Beam-beam	ξy	0.079	0.079	
Luminosity	L	8x10 ³⁵ (8.5x10 ³⁵ with CW)		cm ⁻² s ⁻¹

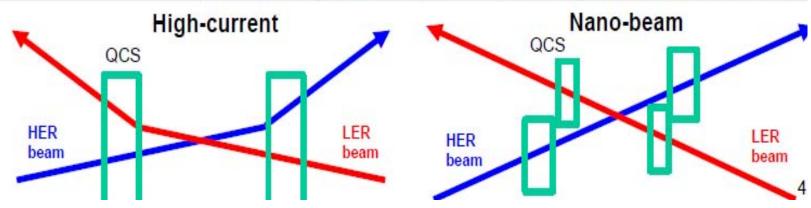
^{*} Luminosity is obtained from beam-beam simulations.

Summary of items

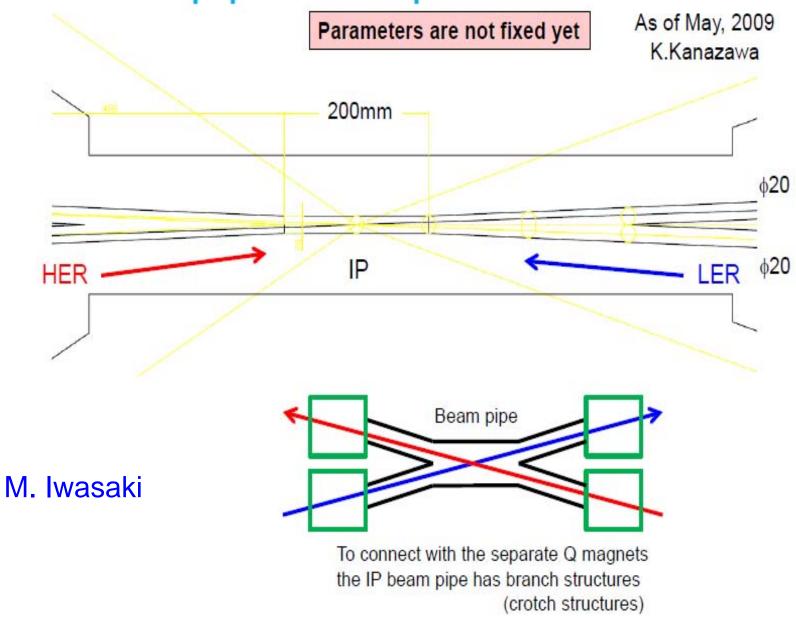
	LER	HER
Low emittance	Longer bends0.89 m to 4 m long	 Increase number of arc cells Smaller dispersion in bends 28 cells to 44 cells
Low beta at IP	 Separated final quads. Closer to IP Superconducting or permanent magnets 	
Local chromaticity correction (LCC) (to get large DA)	 KEKB-LER type Chicane-like (reverse bends) Geometrical flexibility Emittance is generated. 	 ILC/SuperB type (modified to SuperKEKB) Bending angle is necessary (no reverse bends). Emittance can be ignored.

Beam axis and Solenoid axis

What is the Belle solenoid axis? Solenoid axis is:


- (a) LER axis -> +7.45 mrad
- (b) ½ of finite-crossing angle -> +37.45 mrad
- (c) or no solution to rotate BELLE

	Tuesday, 07 July 2009		
16:00			
17:00	[75] Introduction (schedule, etc) by Masako IWASAKI (Tokyo Univ.) (3-go-kan seminar hall: 16:30 - 16:45)	S slides	IR parallel session
	[76] Vibration Measurements by Mika MASUZAWA (KEK) (3-go-kan seminar hall: 16:45 - 17:00)	S slides	
	[77] <mark>Optics</mark> by Akio MORITA (KEK) (3-go-kan seminar hall: 17:00 - 17:15)	S slides	
	[78] QCS magnet by Norihito OHUCHI (KEK) (3-go-kan seminar hall: 17:15 - 17:30)	S slides	
18:00	[79] IP chamber design by Ken-ichi KANAZAWA (KEK) (3-go-kan seminar hall: 17:30 - 17:45)	Sildes	
	[80] HOM calculation by Hitoshi YAMAMOTO (Tohoku U.) (3-go-kan seminar hall: 17:45 - 18:00)	S slides	
	[81] Assembly + BG simulation 1 by Masako IWASAKI (Tokyo Univ.) (3-go-kan seminar hall: 18:00 - 18:15)	Sildes	
	[82] BG simulation 2 by Clement NG (U.Tokyo) (3-go-kan seminar hall: 18:15 - 18:30)	S slides	
	[83] Discussion (3-go-kan seminar hall: 18:30 - 19:00)		


First priorities

High-current option ... SR BG & HOM heating Nano-beam option ... IR assembly & support

i i	High current (LER/HER)	Nano-beam(LER/HER)
Beam current I (A)	High current: 9.4/4.1	~3/~2
Bunch length σ_z (mm)	Short bunch length: 5/3	6/6
Emittance ϵ_{x} (nm)	24/18	Low emittance : 1/1
β _y (nm)	3/6	Small β: 0.22/0.22
Beam size σ_y	0.85/0.73 (μm)	Small beam size : 34/44 (nm)
Final Q-magnet layout	- Common QCS for 2 beams - location 40cm (L) / 65cm (R) Little space in L side	Two separate Q-magnets for each 2 beams Little space in both L/R sides

Beam pipe example: Nano-beam

K. Kanazawa

IP Design

Design Features

- LER beam (incoming): 7.46 mrad with respect to the Belle solenoid axis.
- HER beam (outgoing): 67.46 mrad with respect to the Belle solenoid axis.
- φ 20 mm x l 200 mm straight pipe parallel to the Belle solenoid axis at IP.
- With beam position monitors (BPM)
- ISO-KF-like flange.
- Avoid cavity-like structure at IP.

C. Kiesling, EV(

Soft/Comp Session	13:00 [46 14:00	Discussion of Framework Requirements and Decision Proced by ALL (3-ao-kan 1F meeting room: 13:30 - 14:30)	Kolja	
		[47] A General Event Display by ANDREAS MOLL (MPI) (3-go-kan 1F meeting room: 14:30 - 14:50)	Sittles	
		[48] Twiki and Subversion Repository for Belle-II by THOMAS KUHR (Karlsruhe U.) (3-go-kan 1F meeting room: 14:50 - 15:00)	Sildes	
	15:00	[49] Data Handling Prototype by TOM FIFIELD (Melbourne) (3-go-kan 1F meeting room: 15:00 - 15:20)	Sildes	
		[50] AMGA Metadata Catalog by JUNGHYUN KIM (KISTI) (3-go-kan 1F meeting room: 15:20 - 15:40)	Sildes	
		[51] Grid Computing at Ljubljana and Nova Gorica by MARKO BRACKO (Jozef Stefan) (3-go-kan 1F meeting room: 15:40 - 16:00)	Sildes	
	16:00	[52] News on Cloud Computing by TOM FIFIELD (Melbourne) (3-go-kan 1F meeting room: 16:00 - 16:10)	Sildes	
		[53] Computing Resources by TAKANORI HARA (KEK) (3-go-kan 1F meeting room: 16:10 - 16:20)	Sildes	
		[54] Status of Simulation and Reconstruction Software by TAKANORI HARA (KEK) (3-go-kan 1F meeting room: 16:20 - 16:30)	Sildes	

DAQ Session	16:00	[56] Status of front end unification by G.VARNER (HAWAII) (3-go-kan 1F meeting room: 16:30 - 16:45)	S slides
		[57] Status of CDC readout by M.TANAKA (KEK) (3-go-kan 1F meeting room: 16:45 - 17:00)	Sildes
	17:00	[58] Strategy for unified data link by Z.LIU (IHEP) (3-go-kan 1F meeting room: 17:00 - 17:15)	S slides
		[59] Timing distribution by M.NAKAO (KEK) (3-go-kan 1F meeting room: 17:15 - 17:30)	S slides
		[60] COPPER status by T.HIGUCHI (KEK) (3-go-kan 1F meeting room: 17:30 - 17:45)	S slides
		[61] Event builder design by S.Y.SUZUKI (KEK) (3-go-kan 1F meeting room: 17:45 - 18:00)	Sildes
	18:00	[62] HLT and data flow by R.ITOH (KEK) (3-go-kan 1F meeting room: 18:00 18:15)	Sildes
		[63] Pixel readout I by K.PROTHMANN (MPI) (3 go-kan 1F meeting room: 18:15 - 18:25)	Silides
		[64] Pixel readout II by S.LANGE (GIESSEN) (3-go-kan 1F meeting room: 18:25 - 18:35)	S slides
		[65] Discussion on design consistency and plan by R.ITOH (KEK) (COORDINATOR) (3-go-kan 1F meeting room: 18:35 - 18:55)	S slides

	Wednesday, 08 July 2009	
09:00	[104] Introduction by Toru TSUBOYAMA (KEK) (3-go-kan 1F meeting room: 09:00 - 09:10)	
	[105] DSSD update by Manfred VALENTAN (HEPHY Vienna) (3-go-kan 1F meeting room: 09:10 - 09:30)	S slides
	[106] Construction and Status of the Origami Module Prototype by C. IRMLER (HEPHY Vienna) (3-go-kan 1F meeting room: 09:30 - 09:50)	Sildes
10:00	[118] Status of kupid v2.0 by Eunil WON (Korea Univ.) (3-go-kan 1F meeting room: 09:50 - 10:10)	S slides
	[107] Idea of SVD structure by Toru TSUBOYAMA (KEK) (3-go-kan 1F meeting room: 10:10 - 10:30)	S slides
	Break (10:30 - 10:40)	
	[108] Belle II SVD simulation by Z. DRASAL (Charles University, Prague) (3-go-kan 1F meeting room: 10:40 - 11:00)	Sildes
11:00	[119] SVD only tracking by Andreas MOLL (MPI) (3-go-kan 1F meeting room: 11:00 - 11:20)	slides
	[120] Track Based Alignment by Andreas MOLL (MPI) (3-go-kan 1F meeting room: 11:20 - 11:40)	slides
	[110] Tasks by T. TSUBOYAMA (KEK) (3-go-kan 1F meeting room: 11:40 - 12:00)	S slides

SVD

Session

PXD [66] Status of SOI R&D by Yasuo ARAI (3-go-kan 1F meeting room: 13:30 - 13:45) [67] DEPFET: Project Status	les
Session by Yasuo ARAI (3-go-kan 1F meeting room: 13:30 - 13:45) [67] DEPFET: Project Status	les
(3-go-kan 1F meeting room: 13:30 - 13:45) [67] DEPFET: Project Status	
[67] DEPFET: Project Status	
by Christian KIESLING 14:00 by Christian KIESLING	les
(3-go-kan 1F meeting room: 13:45 - 14:05)	les
[68] Sensor and ASIC R&D	163
by Hans-Günther MOSER	
(3-go-kan 1F meeting room: 14:05 - 14:25)	
[CO] Consequences of name because	
[69] Consequences of nano-beams by Hans-Günther MOSER	les
(3-go-kan 1F meeting room: 14:25 - 14:40)	
[70] Mechanics	les
by Frank SIMON (3-go-kan 1F meeting room: 14:40 - 15:00)	
(5-go-kan ii meeting room: 14.40 - 15.00)	
15:00 [71] Cooling Side	les
by Thomas MüLLER	
(3-go-kan 1F meeting room: 15:00 - 15:20)	
[72] Simulations	les
by Kolja PROTHMANN	103
(3-go-kan 1F meeting room: 15:20 - 15:40)	
[73] Test Beam	das
by Zdenek DOLEZAL	ies
(3-go-kan 1F meeting room: 15:40 - 15:55)	
[74] Tochnical Choices	
[74] Technical Choices 16:00 by Hans-Günther MOSER	ies
C. Kiesling, EVO Meeting, July 21, 2009 (3-go-kan 1F meeting room: 15:55 - 16:05)	

DEPFET-Collab. @ Belle-II

Original Collaboration: DEPFET pixel detector @ ILC (since 2002) now: Unite efforts to deliver a REAL PXD by 2013 for Belle-II

University of Barcelona, Spain Universitat Ramon Llull, Barcelona, Spain Bonn University, Germany Heidelberg University, Germany Giessen University, Germany Goettingen University, Germany Karlsruhe University, Germany IFJ PAN, Krakow, Poland MPI Munich, Germany Charles University, Prague, Czech Republic IGFAE, Santiago de Compostela University, Spain IFIC, CSIC-UVEG, Valencia, Spain

with important help from Hawaii, KEK, Vienna

DEPFET@Belle-II

New management:

• IB- Board

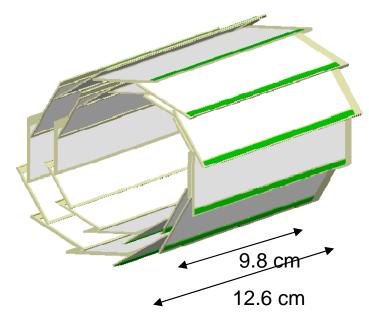
- Project LeaderC. Kiesling
- Technical Coord.
 H.-G. Moser
- "Integration Coord."(Liaison @ KEK)

Institutes and Group Leaders (IB)

Czech Rep.	PRA	Charles-University Prague	Zdenek Dolezal	
Germany	BON GIE GOE HEI KAR MPI	University of Bonn University of Gießen University of Göttingen University of Heidelberg University of Karlsruhe Max-Planck-Institute for Physics, Munich Semiconductor Laboratory (HLL)	Norbert Wermes Sören Lange Ariane Frey Peter Fischer Thomas Müller Christian Kiesling Hans-Günther Moser	
Poland	KRA	Institute of Nuclear Physics, Krakow	Henryk Palka	
Spain	IFV URL UBA CNM IFB USC IFC	Instituto de Fisica Corpuscular (IFIC), Valencia University Ramon Llull, Barcelona University of Barcelona Centro Nacional de Microelectronica, Barcelona Instituto de Fisica d'Altes Energies (IFAE), Barcelona University of Santiago de Compostela Instituto de Fiisica de Cantabria (IFCA), Santander	Carlos Lacasta Jordi Riera Babures Lluis Garrido Enric Cabruja Mokhtar Chmeissani Pablo Vazquez Regueir Ivan Vila Alvarez	°O
Austria	VIE	Institute for High Energy Physics (HEPHY), Vienna	Markus Friedl	
Japan	KEK	KEK	Toru Tsuboyama	
USA	HAW	University of Hawaii	Gary Varner	

Funding of the DEPFET-Collab.

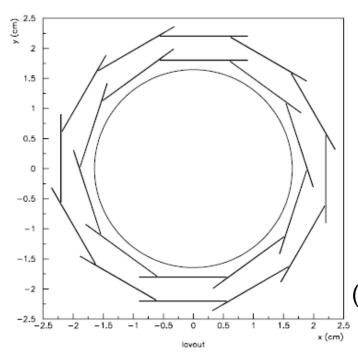
Model: The DEPFET-Collaboration will deliver the PXD hardware and ensure the operation of the detector at Belle-II


Total cost of deliverables (core cost): 2.5 M€

Funding will be provided by the DEPFET-Collaboration

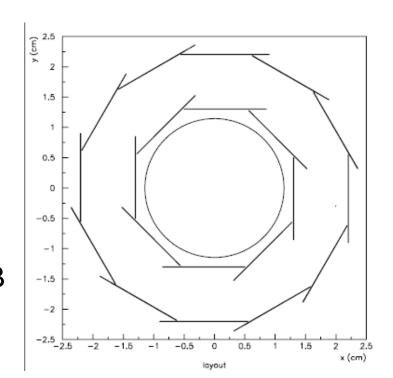
The German groups have applied for Belle-II funding to the Government in December of 2008 (for the years 2009-2012):

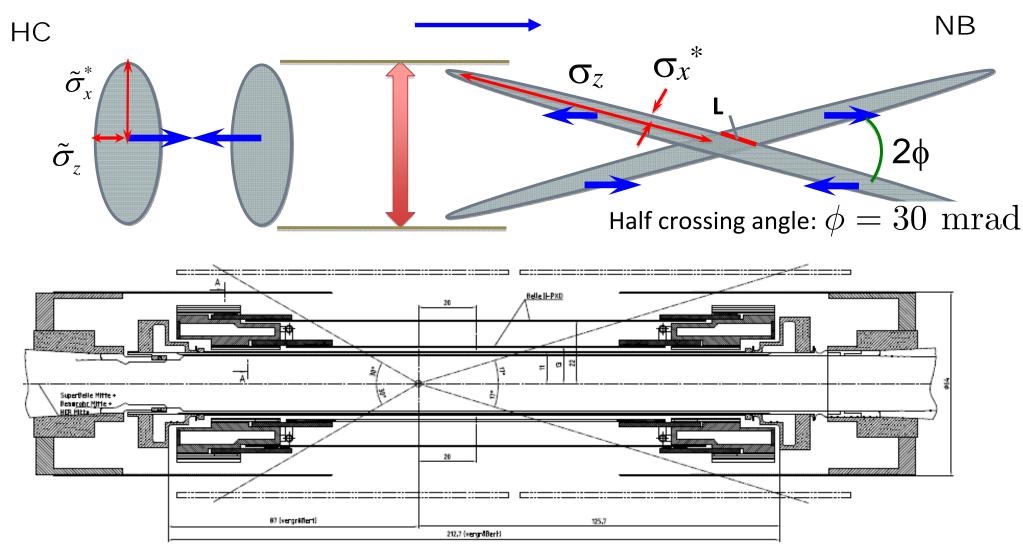
- Asked for total of 2.17 M€ + 13.5 FTE
 (includes travel, MPI will contribute another 1 M€)
- Very positive evaluation by the Ministery
 Granted funds: 1.05 M€ + 3.5 FTE (48% of requested sum)
- New application possible after approval of SuperKEKB + MoU


DEPFET Pixel Detector @ Belle-II

Small, thin (50µm) Detector: 2 layers, 20 modules (in total)

Beam pipe radius (presently): 1.0 cm in the nanobeam option (NB)


Radii still subject to optimisation:


Likely scenario now:

Layer 1 at 1.3 cm Layer 2 at 2.2 cm

HC NB (high current)

NanoBeam Option

NB: so far only "good points" for the PXD:

less SR (~ Belle) smaller beam pipe (BP) BP parallel to Belle-II solenoid

Main R&D Issues currently

Sensors:

K. Prothmann Z. Drasal

Read-out ASICs:

H.-G. Moser

pixel geometry -> parameter studies prototyping, radiation hardness (> 10Mrad), thinning, interconnection with ASICs

Current Digitizer chip (DCD):

prototype OK, needs test at full speed (x2)

Switcher:

rad-hard design, speed OK, redesign for Belle-II

DHP & DHH:

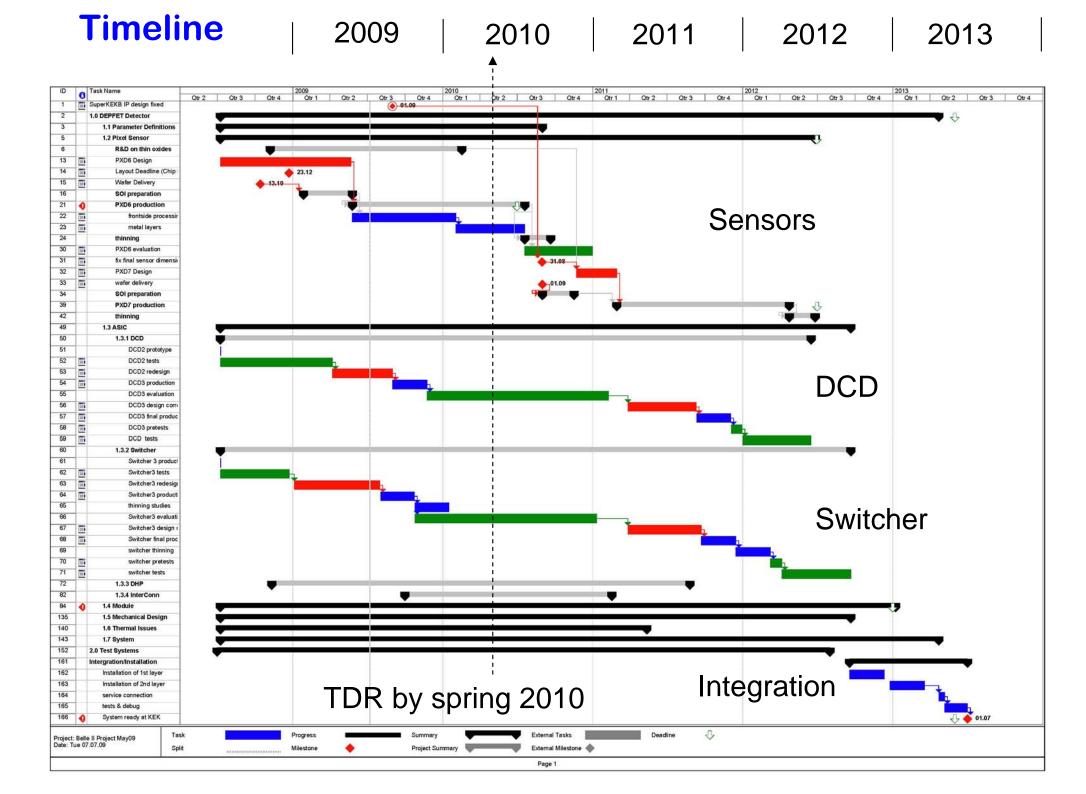
Zero-suppr: 400 Gpx/s -> 3 Gpx/s (triggered)

-> 2.5 Gb/s per half module

DAQ:

100 Gb/s total -> Gießen ATCA system

K. Prothmann, S. Lange


Mechanics:

Mounting structure, cooling, alignment ...,

F. Simon

T. Müller

A. Moll

KEKB Plans

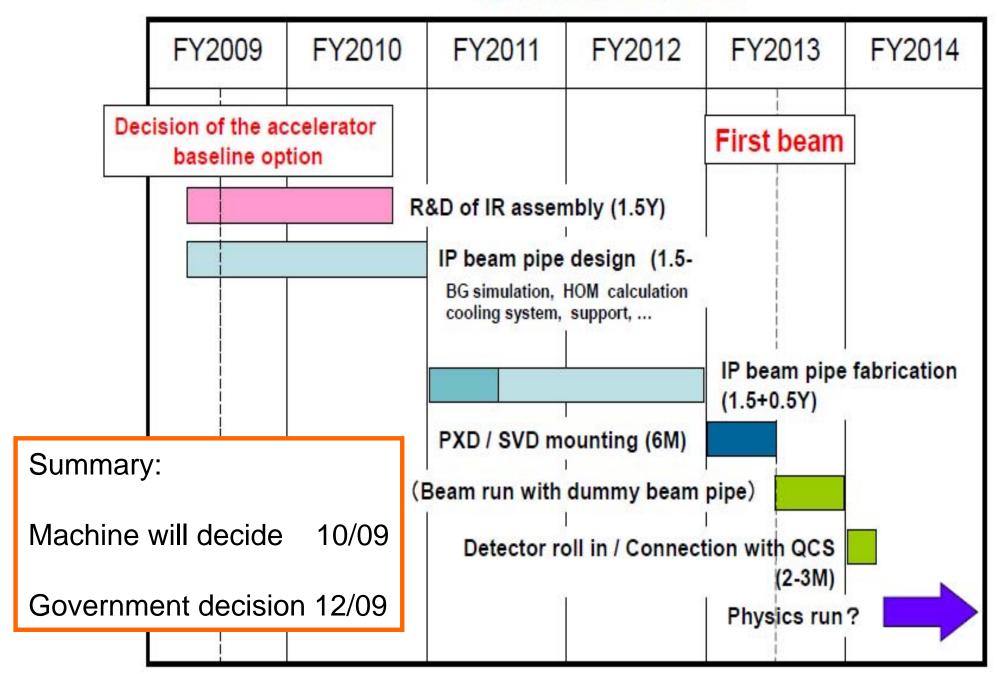
- Increase the luminosity
 - Specific luminosity
 - Correction of x-y coupling at IP (study at Y(1S)?)
 - Peak luminosity: target value 2.5 x 10³⁴ cm⁻² s⁻¹
 - Improve specific luminosity
 - Higher HER beam currents
 - 1200 -> 1350mA?
- Total integrated luminosity
 - To exceed 1000 fb⁻¹ (~964 fb⁻¹ so far : need more accurate value)
- Machine study
 - Vacuum R&D (~2 days (shutdown for vac. works) + ~1day)
 - RF R&D (~2 days?)
 - BT R&D (~1day?)
 - Efforts to increase specific luminosity (~10 days?)

EB Conclusion on Fall 2009 Run Plan

Integrate for 3 weeks on the 5S

8 weeks total expected to be available

Integrate for 3 weeks on the lower resonances (2S, 1S)


May help with x-y coupling issues

Dedicated machine experiments (2 weeks)

The exact scheduling will be decided by KEKB in consultation with Belle

M. Iwasaki

Schedule

