INVESTIGATION OF PEN AS STRUCTURAL SELF VETOING MATERIAL FOR CRYOGENIC LOW BACKGROUND EXPERIMENTS

Felix Fischer March 15, 2018

DPG-Rehearsals, Munich

Max-Planck-Institut für Physik

Large Enriched Germanium Experiment for Neutrinoless ßß Decay

Rare event search ($0\nu\beta\beta$, $\beta\beta$, Dark Matter ...)

Rare event search ($0\nu\beta\beta$, $\beta\beta$, Dark Matter ...)

- Low Background
- ightarrow Reduction & identification of background events
 - New generation of experiments approaches
- ightarrow Develop new methods of identification

Rare event search ($0\nu\beta\beta$, $\beta\beta$, Dark Matter ...)

- Low Background
- ightarrow Reduction & identification of background events
 - New generation of experiments approaches
- ightarrow Develop new methods of identification

 \Rightarrow PEN as structural self vetoing material

WHAT IS PEN?

POLYETHYLENE NAPHTHALATE (PEN)

The common plastic PEN has been shown to scintillate.¹

¹H. Nakamura et al. In: Europhysics Letters 95.2 (June 2011)

² B. Majorovits et al., arXiv:1708.09265v1

The common plastic PEN has been shown to scintillate.¹

Scintillator: material that emits light when struck by ionizing radiation.

PEN excited by ¹³⁷Cs source

¹ H. Nakamura et al. In: Europhysics Letters 95.2 (June 2011) ² B. Majorovits et al., arXiv:1708.09265v1 The common plastic PEN has been shown to scintillate.¹

Scintillator: material that emits light when struck by ionizing radiation.

PEN excited by ¹³⁷Cs source

¹H. Nakamura et al. In: Europhysics Letters 95.2 (June 2011) ²B. Majorovits et al., arXiv:1708.09265v1 Excitation and emission spectrum of PEN. The sample was moulded at TU Dortmund.²

PEN as		Common plastic
scintillator	VS.	scintillator

³H. Nakamura et al. In: Europhysics Letters 95.2 (June 2011)

PEN as scintillator	VS.	Common plastic scintillator
Emits in favourable region	=	Emits in favourable region
Fast enough signal	\rightarrow	Fast signal
(Reported) High light yield ³	=	High light yield
Wavelength shifting	=	Wavelength Shifting

³ H. Nakamura et al. In: Europhysics Letters 95.2 (June 2011)

PEN as scintillator	vs.	Common plastic scintillator
Emits in favourable region	=	Emits in favourable region
Fast enough signal	\rightarrow	Fast signal
(Reported) High light yield ³	=	High light yield
Wavelength shifting	=	Wavelength Shifting
Pure material is		Mixture of plastic and
already a scintillator	\leftarrow	organic scintillator

³H. Nakamura et al. In: Europhysics Letters 95.2 (June 2011)

PEN as scintillator	VS.	Common plastic scintillator
Emits in favourable region	=	Emits in favourable region
Fast enough signal	\rightarrow	Fast signal
(Reported) High light yield ³	=	High light yield
Wavelength shifting	=	Wavelength Shifting
Pure material is		Mixture of plastic and
already a scintillator	\leftarrow	organic scintillator
Can be purified	\leftarrow	Expensive to purify

³ H. Nakamura et al. In: Europhysics Letters 95.2 (June 2011)

PEN as scintillator	vs.	Common plastic scintillator
Emits in favourable region	=	Emits in favourable region
Fast enough signal	\rightarrow	Fast signal
(Reported) High light yield ³	=	High light yield
Wavelength shifting	=	Wavelength Shifting
Pure material is		Mixture of plastic and
already a scintillator	\leftarrow	organic scintillator
Can be purified	\leftarrow	Expensive to purify
Low costs	\leftarrow	Relative expensive

³H. Nakamura et al. In: Europhysics Letters 95.2 (June 2011)

APPLICATION

 Replacement for inactive structural materials like copper in low background experiments ⁴

- ⁴B. Majorovits et al., arXiv:1708.09265v1
- ⁵ F. Simon, CALICE AHCAL, Alternative Scintillator Option, Dec. 2015
- 6_{E, Tiras et al., arXiv:1611.05228v1}
- 7 D, Flühs et al., Ocul Oncol Pathol 2016; 2:5–12

APPLICATION

- Replacement for inactive structural materials like copper in low background experiments ⁴
- Low cost alternative when needing a lot of scintillating tiles⁵
- Radiation hard scintillation detectors for high energy physics⁶
- Replacement for polyvinyltoluene-based scintillators in eye plaque dosimetry⁷

- ^D F. Simon, CALICE AHCAL, Alternative Scintillator Option, Dec. 2015
- ^bE, Tiras et al., arXiv:1611.05228v1
- ⁷ D, Flühs et al., Ocul Oncol Pathol 2016; 2:5–12

⁴B. Majorovits et al., arXiv:1708.09265v

PEN CHARACTERISATION

• Light yield properties

- Spectral response
- Temperature dependence
- Environmental influences
- $\circ~$ Dependence of the light output on mechanical stress
- Attenuation length
- Radiopurity
- Moulding of scintillator tiles

SPECTROSCOPY BASED INVESTIGATION

- Andor spectrometer and CCD camera⁸
- $\circ~$ UV-LED: 255 nm, $P_{\rm max,UV}=2~\mu{\rm W}$

⁸ Shamrock-SR-303I-A spectrograph, iDus DV420A CCD camera

SPECTROSCOPY BASED INVESTIGATION

- Andor spectrometer and CCD camera⁸
- \circ UV-LED: 255 nm, $P_{\rm max,UV} = 2 \ \mu W$

- Resulting spectrum for PEN
- Integrated spectrum is treated as *light output*
- ightarrow Integrated range: 405 to 542 nm

⁸ Shamrock-SR-3031-A spectrograph, iDus DV420A CCD camera

RADIATION DAMAGE AND REPRODUCIBILITY

- $\circ\,$ Constantly decreasing light output when exposed to UV (255 nm, 1.36 $\mu \rm W)$
- → In accordance with other plastic scintillators⁹

⁹C. Zorn, https://doi.org/10.1016/0969-806X(93)90040-2

RADIATION DAMAGE AND REPRODUCIBILITY

- Constantly decreasing light output when exposed to UV (255 nm, 1.36 $\mu W)$
- In accordance with other plastic \rightarrow scintillators⁹

- Three-week reproducibility measurement:
- Standard deviation: 1.0 % \rightarrow

DETERIORATION OF THE LIGHT OUTPUT

- One self-moulded tile was constantly exposed to UV light $(1, 36 \pm 0.01 \ \mu\text{W})$ for 10 days
- $\circ \approx$ 30 % decrease due to photon induced damage (surface effect)
- Afterwards, no recovery detected

- 32 self-moulded tiles, randomly chosen from one batch were set under different conditions for one month:
- $\rightarrow\,$ Dark vacuum, vacuum, dark box, laboratory

CRYOGENIC ENVIRONMENT - LIQUID NITROGEN

PEN tiles were stored in liquid nitrogen for different time spans. After each cycle, the light output was measured again

 $\rightarrow~$ Cooling procedures do not influence the light output of PEN

STRESS TESTS

Experimental set-up¹⁰to expose PEN tiles to stress in a cryogenic environment.

 $¹⁰_{\rm FMT\text{-}220}$ force test stand and FMI-S30K1 force gauge by ALLURIS

STRESS TESTS - RESULTS

PEN tiles were measured regarding their light output before and after exerting them to different stress levels

ightarrow No significant effect could be observed

Stress Tests - Youngs's Modulus

Young's modulus $\left(\frac{Stress}{Strain}\right)$ for PEN increases from 1.9 to 3.5 GPa when cooled down from room temperature to 77 K.¹¹ Maximum yield strength: 150 MPa $\stackrel{Cooling}{\rightarrow}$ 300 MPa

¹¹S. Eck, Bachelor Thesis

- The scintillation spectrum of PEN claimed by Nakamura could be reproduced.
- UV light deteriorates light output.
- Mechanical stress and cryogenic temperatures do not deteriorate light output.
- Light output not optimum yet, probably due to short attenuation length.
- \rightarrow Work in progress

SiPM Based Investigation For cryogenic experiments, silicon photomultipliers (SiPM) are more favourable than a spectrometer.

- Evaluation-board including pre-amplifier from the *Future Detectors* group (MPP)
- 3 × 3 mm SiPM¹²with 3600 pixels (50 μm pitch)

Muon Telescope

- Two triggers
- PEN and common plastic scintillator (BC-408) samples in between

Muon Telescope - Results

Results:

- PEN: clear peak at 14 photoelectrons per MIP.
- BC-408: higher average light output (due to attenuation length?)

Detection efficiency:

- $\circ~\text{PEN:}\approx60~\%$
- $\circ~$ BC-408: $\approx 80~\%$

SiPM Based Experiments - Outlook

 \rightarrow PENNI - PEN at liquid Nitrogen temperature Investigation

Some scintillators provide a higher light yield at low temperatures.¹³

 $\rightarrow\,$ investigate the scintillation properties of PEN at cryogenic temperatures

Outlook - PENNI

Achieved so far:

- $\circ~$ Vacuum of: $\approx 10^{-6}$ mbar.
- Temperature at the inner part of the cold finger: ≈ -140°C.

What has to be done:

- Better thermal insulation during the transition from the dewar into the vacuum.
- Construct a thermal insulated holding structure for radioactive sources.

Backup - PEN vs. BC-408 without UV lamp

Backup - PEN and BC-408 Pulse from SiPM

Backup - UV lamp stability

Backup - Average spectrum

Backup - Fitted emission maximum

Backup - Exposure position

Backup - Claimed PEN spectrum

Backup - Spectra of reproducibility measurements

