Hadronic Energy Reconstruction in the CALICE Combined Calorimeter System

Yasmine Israeli March 22, 2018

Testbeam Analysis of a Full Calorimeter System

Testbeam experiments:

⊗ CERN 2007⊗ FNAL 2008

Datasets:

⊗ π⁻ 4-80 GeV (10-80 GeV, 4-60 GeV) ⊗ GEANT4 10.1 FTFP BERT & QGSP BERT

Reconstruction Methods: Standard reconstruction Software compensation (SC)

Yasmine Israeli

Full Calorimeter Systems

MIP Calibration

 \circledast To equalize the response of the cells in each sub detector \rightarrow a cell-to-cell calibration from ADC counts to MIPs unit

- ✤ For each channel:
 - Clean muon sample
 - The energy spectrum is fitted with a convolution of a Landau distribution and a Gaussian function
 - Most probable value \Rightarrow MIP calibration factor

Standard Energy Reconstruction

• Collect hits from each detector

- Collect hits from each detector
- Calibrate hits from MIPs to GeV

$$E_{reco}^{event} = \sum_{hits}^{ECAL} E_{hit} \cdot C_{ECAL} + \left(\sum_{hits}^{AHCAL} E_{hit} + \sum_{hits}^{TCMT} E_{hit}\right) \cdot C_{AHCAL}$$

- Collect hits from each detector
- Calibrate hits from MIPs to GeV

DPG-Frühjahrstagung, Würzburg 2018

CALICO

The distribution of E_{reco}^{event} is fitted with a gaussian

 $\hookrightarrow \langle E_{reco}^{event} \rangle$ defines the E_{reco}

 \leftrightarrow energy resolution is defined as $\sigma / \langle E_{reco}^{event} \rangle$

The distribution of E_{reco}^{event} is fitted with a gaussian

 $\Rightarrow \langle E_{reco}^{event} \rangle \text{ defines the } E_{reco} \\ \Rightarrow \text{ energy resolution is defined as } \sigma / \langle E_{reco}^{event} \rangle$

The distribution of E_{reco}^{event} is fitted with a gaussian

 $\begin{array}{l} \hookrightarrow \langle E_{\textit{reco}}^{\textit{event}} \rangle \text{ defines the } E_{\textit{reco}} \\ \hookrightarrow \text{ energy resolution is defined as } \sigma / \langle E_{\textit{reco}}^{\textit{event}} \rangle \end{array}$

- *** EM sub-showers**
- * invisible energy
 - $\circ\,$ nuclear binding energy
- slow neutrons
- neutrinos

The distribution of E_{reco}^{event} is fitted with a gaussian

 $\begin{array}{l} \hookrightarrow \langle E_{\textit{reco}}^{\textit{event}} \rangle \text{ defines the } E_{\textit{reco}} \\ \hookrightarrow \text{ energy resolution is defined as } \sigma / \langle E_{\textit{reco}}^{\textit{event}} \rangle \end{array}$

- *** EM sub-showers**
- * invisible energy
 - $\circ\,$ nuclear binding energy
- slow neutrons
- neutrinos

 $\star\star$ Fluctuating from event to event \hookrightarrow energy resolution decreases

Software Compensation

Yasmine Israeli

Software Compensation

For each detector:

- \star Define *j* energy bins
- * Sum the hits in each bin $E_j = \sum_{hits} E_{hit}$
- * Apply weight ω_j to bin $j: \omega_j \cdot E_j$

Yasmine Israeli

Software Compensation Weights

Bin weights are parametrised with particle energy $\omega_j(E)$

- $\longrightarrow 2^{nd}$ order polynomials
- \rightarrow 3 parameters for each bin: a_j, b_j, c_j

 E_{beam} in optimization E_{reco} in SC reconstruction

7

Yasmine Israeli

Si-W ECAL+AHCAL+TCMT : CAN-058 (this analysis) ▷ SC applied to Si-W ECAL+AHCAL+TCMT ▷ Up to 30% improvement

AHCAL+TCMT : JINST 7 P09017

- \triangleright Showers start: first 5 layers of AHCAL
- \triangleright SC applied to AHCAL+TCMT

$\mathsf{ScECAL}{+}\mathsf{AHCAL}{+}\mathsf{TCMT}:\mathsf{CAN-056}$

- \triangleright Scintillator+SiPMs system
- ▷ Showers start:ScECAL till 5th layer of AHCAL
- \triangleright SC applied to ScECAL+AHCAL+TCMT

Similar performance despite the:

- ▷ different absorber material (W, Fe)
- ▷ different structure (Si-W ECAL)
- ▷ different readout techniques (Si sensor,Scintillators+SiPMs)

SC in Different Detectors

DPG-Frühjahrstagung, Würzburg 2018

CALICO

SC in Different Detectors

Yasmine Israeli

DPG-Frühjahrstagung, Würzburg 2018

CALICO

Comparison with Simulations : Resolution CADG

Yasmine Israeli

Comparison with Simulations : Resolution CADE

Yasmine Israeli

Analysis of CALICE high granularity combined full calorimeter system
Similar performance as "less complexed" previous analyses
Data vs MC: agreement with Full SC reconstruction(from ~ 30 GeV)
Applying SC to different detectors energy resolution improvement: Full SC - up to 30% HCAL SC - up to 23% ECAL SC - up to 8% Thank you for your attention $\textcircled{\odot}$

Yasmine Israeli

BACKUP

Yasmine Israeli

Yasmine Israeli

Comparison with Simulations : Linearity

Event Selection for Single Pion

- ⊚ clean data
- \odot only one particle entering ECAL
- \odot electrons rejection: First Interaction Layer (FIL) > 6th layer
- muons rejection: only events with interaction
- \odot reject incomplete showers FIL < layer 55
- ◎ reject muons entering AHCAL from around ECAL

CALICO