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CALICE AHCAL Technological Prototype
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Testbeam at CERN SPS
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 Testbeam campaign at CERN in July 2015 

 Goals:  

• Test of different tile/SiPM designs 

• Check EM performance of the detector 

• Study of timing of hadronic showers in 3D (radial, 
longitudinal) 

Setup: 

• 14 layers (~ 3800 channels) 

• Trigger signal (T0) directly fed to the chip as a 
normal channel → reference time

~ 1.5 λ / 15 X0 *

Trigger signal

~ 1 m

* Iron : λ = 16.8 cm, X0 = 1.7 cm 

Picture of AHCAL in steel stack @ CERN

λ: interaction length 
X0: radiation length~ 1.3 λI / 28 X0

1 13 21 31
~ 4.0 λI / 87 X0

2 3 4 5 6 7 8 9 10 11

• tungsten absorber stack 
λI: 10.8 cm,      X0: 0.4 cm

• 3x3cm scintillating tiles with  
SiPM readout

• 8 small layers (4x36 channels),  
4 big layers   (16x36 channels)

• 3456 total channels

• H6 at SPS beam line

Data:
• 120 GeV Muons
• 20 GeV Electrons
• 10, 30, 50, 70, 90GeV Pions

Photo: LCT-SiPM in SMD Package 

26.06.2015 Yong Liu: IRL Monthly Meeting 3 

Wire bonding “blocks” 36 pixels 
(1.3 %) 
 
Total pixels: 52×52-36 = 2668 

1.3×1.3 mm² with 25µm 
pixel pitch 

+
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2.5 TIMING REQUIREMENTS AT CLIC

Table 2.4: Assumed time windows used for the event reconstruction and the required single hit time
resolutions.

Subdetector Reconstruction window hit resolution

ECAL 10 ns 1 ns
HCAL Endcaps 10 ns 1 ns
HCAL Barrel 100 ns 1 ns
Silicon Detectors 10 ns 10/

p
12 ns

TPC entire bunch train n/a

is performed. Monte Carlo information is used at no stage in the reconstruction. Figure 2.12 shows the
reconstructed particle flow objects for a simulated e+e� ! H+H� ! tbbt event at

p
s = 3 TeV. At the

reconstruction level, the background from gg ! hadrons produces an average energy of approximately
1.2 TeV per event, mostly in the form of relatively low pT particles at relatively low angles to the beam
axis. The level of gg ! hadrons background is roughly 1/15 of that for the entire bunch train (Table 2.3),
commensurate with integrating over 10 ns from the total 156 ns. The background can be further reduced
by applying tighter timing cuts based on the reconstructed calorimeter cluster time. The cluster time
is obtained from a truncated mean of the energy-weighted hit times constituting the cluster. In a fine
grained particle flow detector many hits contribute to a single cluster and cluster time resolutions of
<1 ns are easily achievable. Efficient background rejection is achieved by using tight cuts in the range
of 1.0–2.5 ns on the clusters (depending on the type of reconstructed particle and its pT). This proce-
dure is applied to both neutral particle flow objects and to charged objects where the time of the cluster
associated to the track, corrected by the helical propagation time, is used. These additional timing cuts
are applied to only relatively low pT particle flow objects. The details of the cuts used are discussed in
Section 12.1.4. As a result of the cluster-based timing cuts the average background level can be reduced
to approximately 100 GeV with negligible impact on the underlying hard interaction. The use of hadron-
collider inspired jet-finding algorithms further reduces the impact of the background of gg ! hadrons
and precision physics measurements are achievable in the CLIC background environment as shown in
Chapter 12.

Fig. 2.12: (left) Reconstructed particles in a simulated e+e� ! H+H� ! tbbt event at 3 TeV in the
CLIC_ILD detector concept with background from gg ! hadrons overlaid. (right) the effect of applying
tight timing cuts on the reconstructed cluster times.

61

Motivation: Time Analysis

3

1) Time based clustering

2) Background rejection (CLIC)

3) Discriminate components in hadronic showers by time  
"Software-compensation-like" Before timing cut
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[CLIC CDR: 1202.5940]

CLIC08, CERN, 15/10/2008 Mark Thomson 6

Particle Flow Calorimetry
Hardware:
�Need to be able to resolve energy deposits from different particles

Highly granular detectors (as studied in CALICE) 

Software:
�Need to be able to identify energy deposits from each individual particle !

Sophisticated reconstruction software  

�Particle Flow Calorimetry = HARDWARE + SOFTWARE

After timing cut

Late > ~50ns

Quasi instantaneous

Intermediate
~10ns - 50ns

—> Time Resolution ~1ns needed

Complex time structure of hadronic 
showers due to slow neutrons
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Timing with Spiroc2B
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• Voltage ramps up linear in time

• Two ramps are used alternately to avoid edge 
effects

• On a hit, the ramp voltage is stored in one of 
16 memory cells.

• Digitized by ADC -> TDC values

• Slope:  
    ~1.6 ns / TDC  (test beam mode) 
    ~ 80 ps / TDC  (ILC mode)

time

V
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Fig. 4. SPIROC general scheme 

 

B. SPIROC analogue core 
A ultra-low power 8-bit DAC has been added at the 

preamplifier input to tune the input DC voltage in order to 
adjust individually the SiPM high voltage (see figure 5). 
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Fig. 5. SPIROC connection 

 

Two variable preamplifiers allow obtaining the requested 
dynamic range (from 1 to 2000 photoelectrons) with noise 
level of 1/10 photoelectron. These low noise charge 
preamplifiers are capacitively coupled (with 15 pF for the high 
gain and 1.5 pF for the low gain) constituting voltage 
preamplifiers. These capacitances are necessary to use the 8-
bit DAC at the input. 

Then, these preamplifiers are followed by two variable 
CRRC² slow shapers (from 25 ns to 175 ns) and two 16-deep 
switched capacitor array (SCA) in which the analogue voltage 
will be stored. A voltage 300 ns ramp gives the analogue time 
measurement. The time is also stored in a 16-deep SCA when 
a trigger occurs. In parallel, trigger outputs are obtained via a 
fast shaper followed by a discriminator. The trigger 
discriminator threshold is given by an integrated 10-bit DAC 
common to the 36 channels. This threshold is finely tuneable 
on additional 4 bits channel by channel. The discriminator 
output feeds the digital part which manages the SCA. The 
complete scheme of one channel is shown on figure 6. 

 

 
Fig. 6. SPIROC one channel diagram 

 

C. Embedded 12-bit ADC 
The ADC used in SPIROC is based on a Wilkinson 

structure. Its resolution is 12 bits. As the default accuracy of 
12 bits is not always needed, the number of bits of the counter 
can be adjusted from 8 to 12 bits. This type of ADC is 
particularly adapted to this application which needs a common 
analogue voltage ramp for the 36 channels and one 
discriminator for each channel. The ADC is able to convert 36 
analogue values (charge or time) in one run (about 100 µs at 
40 MHz). If the SCA is full, 32 runs are needed (16 for 
charges and 16 for times).  

D. Expected analogue performance 
The new analogue chain in SPIROC allows the single 

photo electron calibration and the signal measurement to be in 
the same range, simplifying greatly the absolute calibration. 
An analogue simulation of a whole analogue channel is shown 
in figure 7.  It is obtained with an equivalent charge of 1 
photoelectron (160 fC at SiPM gain 106).  

Concerning the time measurement, the simulation shows a 
gain of 120 mV per photoelectron with a peaking time of 15 
ns on the “fast channel” (preamplifier + fast shaper). The 
photoelectron to noise ratio is about 24 which is quite 
comfortable to trigger on half photoelectron. 

For the energy measurement, the simulation gives a gain of 
10 mV per photoelectron with a peaking time of about 100 ns 
on “high gain channel” (high gain preamplifier + slow shaper). 
The photoelectron to noise ratio is about 11 and should be 
sufficient for the planned application. On the “low gain 
channel”, the photoelectron to noise ratio is about 3 and it 
meets largely the requirement 
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Time Calibration
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Hit [ns]
500 1000 1500 2000 2500 3000

T0
 - 

H
it 

[n
s]

15−

10−
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0

5

10

15

Example Channel: Non-Linearity Correction

CALICE AHCAL 
Work in progress

Mip0 1 2 3 4 5 6 7 8 9

dT

-4

-3

-2

-1

0

1

2

3  / ndf 2χ  5.313 / 73
p0        0.04311± -2.737 
p1        0.4846± 8.461 
p2        0.06529± -1.091 

 / ndf 2χ  5.313 / 73
p0        0.04311± -2.737 
p1        0.4846± 8.461 
p2        0.06529± -1.091 

Time Walk

CALICE AHCAL 
Work in progress

• Calibrate all other channels with respect to  
time reference (T0s, or BIF)
‣ TDC to ns conversion

- linear fit (precision on per mill level needed) 
- 2 slopes for each chips 
- pedestal for each channel  

   and memory cell 
‣ Non-linearity correction

- quadratic fit for each slope 
‣ Time-walk correction

Calibration Scheme

● Slope should be the same for all channels / 
memory cells in a chip

● O⌫set may di⌫er

● Crash of robust ⇡t may be avoided by limiting 
number of points < 1000

● Fix-Parameter does not work for robust ⇡t
Hit [tdc]

1000 1500 2000 2500 3000

T0
 [n
s]

500

1000

1500

2000

2500

3000 / ndf2� 1.918e+07 / 1256
p0 0±1079−
p1 0±1.582

/ ndf2� 1.918e+07 / 1256
p0 0±1079−
p1 0±1.582

152 18 1 0

1. Robust Fitting first 
memory Cells of all channels

2. Cut away everything around 10ns of fit, 
fit again with fixed slope (not robust)

3. Extend calibration to channels and
memory Cells that cannot be calibrated
(introduces larger error, because offset
is not constant)
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Muon Time Resolution
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Used as input for MC time smearing
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CALICE AHCAL 
work in progress

Time Resolution: 
~10ns (FWHM), 5.6ns (RMS)

Geant4 10.1
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Electromagnetic Showers
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2015 CERN 
tungsten stack

CALICE AHCAL 
work in progress • Time resolution of electromagnetic showers gets 

worse

• Effect of the electronics: base-line shift and worse 
resolution for high occupancy in chips

• Mismatch between data and simulation can be 
explained by higher occupancy in first layer of 
simulation
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Time Measurement of Hadronic Showers
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Hittime - T0 time, normalized to event
• Pion time distribution compared to several  

physics lists

• Bertini and HP physics lists overestimate late tail  
by factor ~2

2014 JINST 9 P01004

BERT FTFP
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QGSP_BIC_HP

FTFP_BERT_HP
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LEP QGSPBinary Cascade
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25

Figure 5. Schematic representation of selected GEANT4 physics lists with the energy ranges of the different
models. In the overlap regions between the models, a random choice between the corresponding models is
performed, based on the kinetic energy of the incident particle in each interaction.

lists are combined with the data-driven Neutron High Precision (HP) Models and Cross sections,
which treat the detailed simulation of the interaction, transportation, elastic scattering and cap-
ture of neutrons with energies below 20 MeV. Since the electromagnetic model is the same for all
GEANT4 physics lists, the e± data are compared with the QGSP BERT HP physics list only.

4.2 Generation and digitisation of the simulation

Events are generated for each of the selected physics lists described in section 4.1. To compare
simulation with data, one needs to consider realistic detector effects which occur in addition to the
particle interaction and energy deposition. This is done both at the generation and digitisation level.

At the generation step, the following aspects are taken into account:

• Signal shaping time of the readout electronics: to emulate the signal shaping time, only hits
within a time window of 150 ns (corrected for the time of flight) are accepted. The start
of the time window is defined from the moment when the particle reaches the W-AHCAL
front face.

• Non-linearity of the light output: in the case of plastic scintillator, the light output per unit
length has a non-linear dependence on the energy loss per unit length of the particle’s track.
This behaviour is described by the so-called Birks’ law [12]:

dL
dx

µ dE/dx
1+ kBirks ·dE/dx

, (4.1)

where dL/dx represents the light output per unit length, dE/dx is the energy lost by the
particle per unit length of its path (in units of MeV/mm), and kBirks is a material-dependent
factor (Birks constant). The Birks’ law is applied to the W-AHCAL hits, using a factor of
kBirks = 0.07943 mm/MeV [13].

For the digitisation of the signal, the same sets of calibration values and of dead or uncalibrated
channels are used as for the reconstruction of the experimental data. In a first digitisation step, the
simulated energy (in GeV) is converted into MIP based on a MIP-to-GeV factor obtained with
simulated muons. Next, the following aspects are taken into account: the detector granularity, the
light sharing between the tiles, the non-linear SiPM response due to saturation and the conversion
of the signal from MIP to ADC counts, the statistical smearing of the detector response at the pixel
scale, and the contribution from electronic noise (obtained from data). At this stage, the energy

– 6 –

2015 CERN 
tungsten stack
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Time Measurement of Hadronic Showers
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• Consistently more late hits for QGSP_BERT_HP

• QBBC is missing some late hits at bigger radii and lower 
energies
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Time Measurement of Hadronic Showers
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• Steel data: Independent analysis by E. Brianne

• ~10 times more hits for tungsten absorber compared to steel

• Later low energy depositions

• Later hits with large distance to shower axis 

More late low energy hits at 
larger hit radii in tungsten 
—> More slow neutrons 
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Time measurements in magnetic field
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Time Resolution: 5ns (FWHM), 4.3ns (RMS)
Hit time [ns]
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• Test beam with 15 layers in 
small steel stack in 2017

• Test detector performance 
in magnetic field

• Beam Interface Board (BIF) 
gives time reference

• Time distribution stays 
stable in magnetic field

• Better time resolution 
with BIF

CALICE AHCAL 
work in progress
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Conclusion
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• Working calibration procedure
• Muon time resolution: 10ns (FWHM), 5.6ns (RMS)
• We are able to perform time analysis of hadronic showers with 

the AHCAL technological prototype

• Two times more late hits seen in QGSP_BERT_HP (and 
similar) physics lists for tungsten

• Late hits due to slow neutrons with low energy deposition 
mainly at the outer part of the shower

• Looking forward to data taking of new large prototype this year!
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Backup

13
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Number of Hits
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• Inefficiencies especially in Layer 11

• ToDo: Update map of dead channels. Currently: just exclude layer 11

-1

2015 CERN 
tungsten stack

CALICE AHCAL 
work in progress
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tungsten stack

CALICE AHCAL 
work in progress
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2015 CERN 
tungsten stack

High occupancy in a chip degrades time resolution
(Will be fixed in new chips)

CALICE AHCAL 
work in progress
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Electromagnetic Showers
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Mean number of hits in each chip
per event. Scale from 1 to 8.

Data, Tungsten

Simulation, Tungsten

2015 CERN 
tungsten stack

CALICE AHCAL 
work in progress

• Difference in number of hits per chip between data and 
simulation for first layer
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• Less hits in data in layers 5&6 (problematic layers)

Layer
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• More events with high number of hits in data
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• Distribution of distance of hit to CoG 
of event is well described by 
QGSP_BERT_HP
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Late hits clearly visible in pion data, consistency over whole energy range 

2015 CERN 
tungsten stack

2015 CERN 
tungsten stack
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Hittime - T0 time, normalized to event
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