#### Temperature Dependence of Charge Carrier Transport in Germanium Detectors

Martin Schuster for MPI for Physics, Munich

21<sup>th</sup> March, 2018







### Structure and Outline



- Physics Motivation
- Detector & Experimental Setup
- Charge Carrier Drift & Crystal Axes
- First Results on Temperature Dependence
- Summary and Outlook



# **Physics Motivation**

- Open Questions for Neutrinos
  - Nature of the neutrino: Dirac or Majorana
  - Inverted or Normal Hierarchy
  - Absolute mass scale
- Neutrinoless ββ Decay





### Germanium



- Isotope  $^{76}\text{Ge}$  is candidate for Neutrinoless  $\,\beta\beta\,$  Decay
- (Enriched) Ge-Detectors: Act as both source and detector at the same time
  - → High detection efficiency
  - → Excellent energy resolution
- Large Enriched Germanium Experiment for Neutrinoless ββ Decay
  - Collaboration is currently being formed



Large Enriched Germanium Experiment for Neutrinoless ββ Decay

- High requirements concerning the understanding of Ge-Detectors in both hardware and analysis
- Detector design and simulation: Mobilities / Temperature dependence?



## Segmented BEGe Detector







- Point Contact Detector
  - n-type
  - Distinct electric field
- 4-fold Sementation
  - Additional information
  - Understand Pulse Shapes
- Study Detector Properties to understand backgrounds
- T-dependence of charge carrier mobility







#### **Signal Formation**



### Experimental Setup: "K2"





- Electrically cooled cryostat
- 3-axes scanning stages
- 250 MHz Data Acquisiton
- Collimated 133Ba Source
  - Low energy lines to produce surface events





Φ=160 deg, E=31 keV, T=98 K

#### Super Pulse







Φ=160 deg, E=31 keV, T=98 K





Φ=160 deg, E=31 keV, T=98 K



### Influence of Crystal Axes



- 360 deg scan around the side of the detector
- Core rise-times from 5-95% from 31 keV Supe Pulses
- "Slow Axes": <110> and "Fast Axes": <100>, <010>





Φ=30 deg, E=31 keV, T=98 K, near "Fast Axis"



#### First Results on T-dependence







#### First Results on T-dependence







# Summary & Outlook



- Summary
  - Temperature dependence of drift velocity of charge carriers is not well studied
  - At higher T, the charge collection takes longer (e-drift)
  - The T dependence is correlated with the crystal axes
- Outlook
  - Further scans are being taken
  - Relation of T- dependence and crystal axes in detail
  - Check whether rising the Voltage changes things
  - p-type detector: hole drift
  - Comparison with simulations to learn about mobilities



## Backup









