Barbara Schweisshelm

Motivation

Diffusion in Simulation

Results

Conclusion

Understanding Pulse Shape Discrimination in Germanium Detectors: Diffusion Effects DPG Würzburg 2018

Barbara Schweisshelm

Max Planck Institute for Physics, Munich

March 22, 2018

Barbara Schweisshelm

Motivation

Diffusion in Simulation

Results

Conclusion

Outstanding background

- Outstanding background reduction
- But: some background always remains
- Signal and background discrimination is indispensible
- \rightarrow Pulse Shape Discrimination (PSD)

$\operatorname{GERDA}\, \text{Experiment}$

[GERDA Homepage]

30 Broad Energy Germanium (BEGe) detectors

- High energy resolution
- Pronounced weighting potential → simplifies PSD

Barbara Schweisshelm

Motivation

Diffusion ir Simulation

Results

Conclusior

GERDA

Weighting potential

Weighting Potential

Shockley - Ramo Theroem $Q = -q \ arphi_0(ec{x})$

 $\label{eq:Q} \mathsf{Q} = \mathsf{induced \ charge \ at} \\ \mathsf{electrode}$

$$q = drifting charge$$

 $\varphi_{\rm 0} = {\rm weighting \ potential}$

Barbara Schweisshelm

ßß

Motivation

Diffusion in Simulation

Results

Conclusion

Pulse Shape Discrimination in GERDA BEGes

- Pronounced weighting potential at electrode
- Distinguish single site (SSE) and multi site events (MSE)

• Rejection of surface events

 $\begin{array}{l} \mbox{[adapted from arXiv: 1307.2610]} \\ \mbox{Amplitude / Energy (A/E) of current signal gives information} \\ \mbox{over event topology} \rightarrow A/E \mbox{ used to classify events} \end{array}$

DPG Frühjahrstagung Würzburg - March 22, 2018

n+

Barbara Schweisshelm

Motivation

Diffusion in Simulation

Results

Conclusion

2D Calibration Spectrum

A/E spectrum for Th calibration data

Double escape peak (DEP), single escape peak (SEP) and full energy peak (FEP) of ²⁰⁸Tl What influence do diffusion effects have on this spectrum?

 \rightarrow Simulation

Barbara Schweisshelm

30

[uu 20 z 10

0

Ó

10

Motivation

Diffusion in Simulation

Results

Conclusio

Charge Diffusion in SigGen Simulation

3500

3000

2500

2000

1500

1000

500

- Spherical charge clouds
- Holes and e^- separately
- Cloud is traveling through the detector
 - \rightarrow velocity depends on
 - field strength at each point
- Charge cloud size affected by diffusion and self-repulsion
- Track drift of point charge and cloud dimensions separately \rightarrow convolution
- \rightarrow How does the diffusion affect A/E?

starting point

30

path e path h

20

r [mm]

SigGen code by David Radford.

open source: https://radware.phy.ornl.gov/MJ/mjd_siggen/

Barbara Schweisshelm

Motivation

Diffusion in Simulation

Results

Conclusion

Effect on Simulated Pulses

$\label{eq:energy} \begin{array}{l} \mbox{Energy deposition at a specified position} \\ \rightarrow \mbox{Energy dependence of the current pulse amplitude (A)?} \end{array}$

- Diffusion creates a slope
- Initial charge cloud size additionally decreases A/E

Barbara Schweisshelm

Motivation

Diffusion in Simulation

Results

Conclusion

Effect on Simulated Pulses

- A/E decreases with increasing charge cloud size
- Diffusion leads to an additional decrease with energy

Barbara Schweisshelm

Motivation

Diffusion in Simulation

Results

E dependence of initial single site cloud size

- σ of hits given by Geant4 Th calibration simulation
- Higher $\mathsf{E} \to \mathsf{bigger}$ charge cloud size $\to \mathsf{lower} \; \mathsf{A}/\mathsf{E}$
- Study effect of different clustering sizes

Barbara Schweisshelm

Motivation

Diffusion in Simulation

Results

Conclusion

1250 120 Simulation Simulation Electronics Electronics 100 1000 Charge [a.u.] Current [a.u.] 80 750 60 500 40 250 20 600 200 800 400 800 400 600 time [ns] time [ns]

- Optimization of parameters using averaged DEP events from data
- Electronics smoothens the pulses

Electronics Model

Realistic Noise

Understanding Pulse Shape

Discrimination in Germanium Detectors: Diffusion Effects

Motivation

Diffusion in Simulation

Results

Conclusion

- Sharp A/E distribution from simulated pulses
- Extract noise from baseline events
- · Add noise for a more realistic distribution

Barbara Schweisshelm

Motivation

Diffusion in Simulation

Results

Conclusion

Energy Dependence of A/E

- A/E distribution with electronics and realistic noise
- A determined after 50 ns moving window average filter
- Slope of SSE band determined by fit

Results for one BEGe

Discrimination in Germanium Detectors: Diffusion Effects

Understanding Pulse Shape

Barbara Schweisshelm

Motivation

Diffusion in Simulation

Results

Conclusion

Simulated slopes	$[10^{-6}]$	${\rm keV^{-1}}]$	
------------------	-------------	-------------------	--

	without electronics		
clustering size	diff on	diff off	
0 mm	-8.03 ± 0.07	-8.18 ± 0.07	
0.1 mm	$\textbf{-7.67}\pm0.07$	-8.15 ± 0.08	
0.3 mm	$\textbf{-7.09}\pm0.07$	$\textbf{-7.58}\pm0.07$	
0.5 mm	$\textbf{-7.68}\pm0.06$	$\textbf{-5.59}\pm0.21$	
	with electronics		
0 mm	-3.07 ± 0.07	-3.24 ± 0.06	
0.1 mm	-3.24 ± 0.23	-2.83 ± 0.06	
0.3 mm	$\textbf{-3.21}\pm0.07$	-2.69 ± 0.06	
0.5 mm	-3.14 ± 0.06	-2.11 ± 0.06	

- Uncertainty given by fit
- Slope is already induced by event size (not diffusion)
- Electronics model reduces slope

Barbara Schweisshelm

Motivation

Diffusion in Simulation

Results

Conclusion

Comparison of all Detectors

Slopes of SSE band for all detectors in data and simulation

- Simulated slope and data are same order of magnitude
- Simulation shows similar trends as data

Conclusion

Understanding Pulse Shape Discrimination in Germanium Detectors: Diffusion Effects

Barbara Schweisshelm

Motivation

Diffusion in Simulation

Results

- BEGe detectors \rightarrow powerful event by event background identification
- Energy dependence of A/E seems to be mainly caused by event size
- Diffusion goes in the same direction but the effect is not significant if the event size is taken into account
- Electronics model has a larger influence than diffusion
- Electronics model can reproduce the trends within the strings
- Pulse shape simulations help GERDA to understand A/E better