Messung der Higgs–Gluon–Tensorkopplung in Zerfällen H \rightarrow ZZ* \rightarrow 4 ℓ mit dem ATLAS–Detektor

DPG-Frühjahrstagung 2018 in Würzburg

Maxim Sinner 21. März 2018 Betreuerin: Sandra Kortner

Max–Planck–Institut für Physik (Werner–Heisenberg–Institut)

GEFÖRDERT VOM

Das Higgs-Boson und die \mathcal{CP} -Quantenzahl

- Eigenschaften, wie Spin oder Parität im LHC-RUN1 gemessen.
- · Bisher: Vorhersagen des Standardmodells (SM) bestätigt:

$$J^{CP} = 0^+$$
 Hypothese bevorzugt (CP –gerade)

- Viele Modelle jenseits des Standardmodells (BSM) nehmen einen erweiterten Higgs-Sektor an.
 - Higgs–Boson kein reiner Zustand, sondern Überlagerung von $\mathcal{CP}\text{-}\mathsf{geraden}$ und –ungeraden Anteilen:

$$\begin{split} \left| \mathsf{H}_{\mathrm{BSM}} \right\rangle &= \cos \alpha \, \left| 0^{+} \right\rangle + \sin \alpha \, \left| 0^{-} \right\rangle \\ \cdot \, \text{Wegen} \, \mathcal{CP} \left| 0^{\pm} \right\rangle &= \pm \left| 0^{\pm} \right\rangle \text{, Verletzung der } \mathcal{CP}\text{-Invarianz:} \\ \mathcal{CP} \left| \mathsf{H}_{\mathrm{BSM}} \right\rangle &\neq \left| \mathsf{H}_{\mathrm{BSM}} \right\rangle \end{split}$$

Der Kanal H ightarrow ZZ $^* ightarrow$ 4 ℓ

Zerfallskanal:

- Zwei Leptonenpaare: jeweils gleiches Flavour, unterschiedliche Ladung; $(\ell^{\pm} = e^{\pm}, \mu^{\pm})$
- Klare Signatur, niedrige Ereigniszahl im Endzustand
- Hohes Signal–zu–Background Verhältnis

Dominanter Untergrund: $qq \rightarrow \mathsf{Z}(\mathsf{Z}^{(*)}/\gamma)$

Weiterer Untergrund: Z + jets und tt-Produktion

Higgs-Gluon-Kopplung jenseits des SM

- Untersuchung in Anlehnung an eine effektive Feldtheorie (EFT)
- Annahme: keine neue BSM–Physik unterhalb Cut–off–Skala Λ.
- → Grenzfall: Punktförmige Wechselwirkung zwischen Higgs-Boson und Gluonen
 - Annahme: SM–Zerfallsvertex

Beschreibung der Kopplungen mittels des *Higgs–Characterisation–Models*; SM Lagrangian erweitert, um anomale Kopplungen zu berücksichtigen (JHEP 11 (2013) 43) :

$$\mathcal{L} = \left\{ \kappa_{\rm SM} \cos \alpha \left[\frac{1}{2} g_{\rm HZZ} Z_{\mu} Z^{\mu} + g_{\rm HWW} W^{+}_{\mu} W^{-\mu} \right] - \frac{1}{4} \left[\kappa_{\rm Hgg} \cos \alpha g_{\rm Hgg} G^{a}_{\mu\nu} G^{a,\mu\nu} + \kappa_{\rm Agg} \sin \alpha g_{\rm Agg} G^{a}_{\mu\nu} \tilde{G}^{a,\mu\nu} \right] \right\} \chi$$

$$= \frac{1}{4} \left[\kappa_{\rm Hgg} \cos \alpha g_{\rm Hgg} G^{a}_{\mu\nu} G^{a,\mu\nu} + \kappa_{\rm Agg} \sin \alpha g_{\rm Agg} G^{a}_{\mu\nu} \tilde{G}^{a,\mu\nu} \right] \left\{ \chi_{\rm SM} C\mathcal{P}_{\rm -ungerade} \right\}$$

In dieser Studie: $\kappa_{\rm SM} \cos \alpha \, =$ 1, $\kappa_{\rm Hgg} \cos \alpha \, =$ 1

$\kappa_{ m SM} \cos lpha$

Abweichung von SM-Kopplungsstärke

$\kappa_{ m Hgg}\coslpha$

Stärke der \mathcal{CP} -geraden BSM-Wechselwirkung

$\kappa_{Agg} \sin \alpha$

Stärke der CP-ungeraden BSM-Wechselwirkung

Higgs-Produktionsmechanismen

Hauptmechanismen für die Higgs–Produktion am LHC:

- **ggF** Gluonfusion
- VBF Vektorboson-Fusion
- VH asoziierte Produktion mit Vektorbosonen
- ttH asoziierte Produktion mit schweren Quarks

Produktion	x-sec[pb]		
ggF VBF	$48.58^{+5.0\%}_{-5.0\%}$ $3.78^{+2.1\%}_{-2.1\%}$		
WH	1.37 ^{+2.0} %		
ZH	$0.88^{+4.1\%}_{-3.5\%}$		
tīH	0.51 ^{+6.8} %		

LHC Higgs Cross Section Working Group

- + Hauptproduktionsmechanismus im Kanal $\label{eq:Hauptprod} H \to \mathsf{ZZ}^* \to 4\ell.$
- Bei der Produktion können zusätzliche Jets entstehen.
- Grob die Hälfte der ggF–Ereignisse sind ohne zusätzliche Jets.
- Ereignisse mit 2 oder mehr Jets machen in etwa 15 % aus.

Exemplarisch: Feynman-Diagramme von ggF Prozessen mit 2 Jets im Endzustand:

Ergebnisse bei 36.1 fb⁻¹

arXiv: 1712.02304v1

- Bisherige Studien der anomalen Beimischungen zur Higgs-Gluon-Kopplung
- Keine Unterscheidung bzgl. dem Vorzeichen von κ_{Agg} möglich.

\mathcal{CP} -sensitive Observable

Motivation:

- + Produktionsprozess $pp \to H+2{\rm jets}$ sensitiv auf $\mathcal{CP}\text{-}\mathsf{Eigenschaften}.$
- + Verteilung von $\Delta \phi_{\rm jj}$ erlaubt Diskriminierung bzgl. cos $\alpha \kappa_{\rm Agg}$.

Definition:

• Azimutwinkel zwischen den Projektionen der zwei *führenden Jets* in der transversalen Ebene:

$$\varDelta\phi_{\rm jj}=\phi_{\rm j1}-\phi_{\rm j2}$$

Wobei für die Rapiditäten: $y_{j1} \ge 0 > y_{j2}$. (Schnitt auf unterschiedliche Hemisphären)

Zusätzliche Schnitte:

$$\begin{split} |\eta(\mathsf{H})| &< 2.5 \qquad p_{\mathrm{T}}^{4\ell} > 70 \text{ GeV} \qquad \Delta R_{\mathrm{jj}} > 0.6 \\ |\eta(\mathrm{j})| &< 5 \qquad p_{\mathrm{T}}^{\mathrm{j}} > 20 \text{ GeV} \qquad m_{\mathrm{jj}} > 400 \text{ GeV} \end{split}$$

M. Sinner | Messung der Higgs-Gluon-Tensorkopplung

5⁻¹dơ/d∆∳_{jj}(0.1^¹ rad)

Phys. Rev. D 90 (2014) 073008

$\mathbf{\Delta}\phi_{\mathbf{j}\mathbf{j}}$ im Higgs–Characterisation–Modell

- Monte Carlo ggF–Samples erstellt f
 ür verschiedene Werte von κ_{Agg} (MadGraph5_aMCONLO)
- ightarrow Sensitivität von $\Delta \phi_{
 m jj}$ auf die Stärke und das Vorzeichen des anomalen Kopplungsparameters

$\kappa_{\rm Agg}.$

 Schnitte im Vergleich zu denen im Papier wesentlich lockerer (hauptsächlich p_T^{4ℓ} und m_{ii}).

Erwartungen bei 120 fb⁻¹

- Die erwartete integrierte Luminosität für RUN2 beträgt 120 fb⁻¹.
- Die Tabelle zeigt Anzahl der erwarteten ggF–Ereignisse $N_{\rm cat}$ in den 0–, 1– und 2–Jet–Kategorien für eine Auswahl an Parameterkonfigurationen.
- Die Zahlen sind für generierte Ereignisse (NLO).
- Die Rekonstruktionseffizienz wurde mithilfe eines Skalierungsfaktors berücksichtigt.

ATLAS Work in progress

Kategorie	$\kappa_{\rm SM} = 1$ $\cos \alpha = 1$	$\kappa_{\rm SM} = 1$ $\cos \alpha = 1/\sqrt{2}$	$\kappa_{\rm SM} = 1$ $\cos \alpha = 1/\sqrt{2}$	$\kappa_{\rm SM} = 1$ $\cos \alpha = 1/\sqrt{2}$	pures BSM ($\kappa_{\rm Hgg} = 0$) $\kappa_{\rm SM} = 1$ $\cos \alpha = 1/\sqrt{2}$
	$\kappa_{Agg} = 0$	$\kappa_{Agg} = 0.5$	$\kappa_{Agg} = 1.55$	$\kappa_{Agg} = 2$	$\kappa_{Agg} = 1$
Gesamt	154.58	60.33	247.55	384.49	86.92
$n_{\rm jets} = 0$	86.27	33.91	139.29	216.94	48.91
$n_{\rm jets} = 1$	45.26	17.52	72.00	111.07	26.63
$n_{ m jets} \ge 2$	23.05	8.90	36.21	56.39	12.37

+ Kategorie $n_{\rm jets} \ge$ 2: Statistik ist limitierender Faktor.

M. Sinner | Messung der Higgs-Gluon-Tensorkopplung

Tests von verschiedenen κ_{Agg} -Hypothesen durch den Fit von der Ereigniszahl (N_{cat}) in 0-, 1- und 2-Jet-Kategorien (und der $\Delta \phi_{jj}$ -Verteilung) an die Pseudodaten.

Ein Pseudo–Datensatz simuliert ein SM Signal ($\kappa_{\mathrm{Agg}} = 0$).

Ein Pseudo-Datensatz simuliert ein Signal mit $\kappa_{Agg} = 0.43.$

Während bei Signalmodellierung mit Observable $N_{\rm cat}$ keine Aussage über das Vorzeichen von $\kappa_{\rm Agg}$ gemacht werden kann, wird mit $\Delta \phi_{\rm jj}$ die Hypothese $\kappa_{\rm Agg} = -0.43$ mit einem Konfidenzniveau (CL) von 68 % weniger bevorzugt wird.

ATLAS Work in progress

	120 fb ⁻¹		300 fb ⁻¹		3000 fb ⁻¹	
N_{cat}	-0.27	0.28	-0.21	0.22	-0.11	0.12
N_{cat} & $\Delta \phi_{ m jj}$	-0.26	0.27	-0.20	0.21	-0.11	0.12

- Ausschlussgrenzen bei 95 % Konfidenzniveau unter SM–Hypothese.
- \cdot Für integrierte Luminositäten von 120 fb⁻¹, 300 fb⁻¹ und 3000 fb⁻¹.
- + Fits von $N_{
 m cat}$ bzw. $N_{
 m cat}$ & $\Delta \phi_{
 m jj}$ für SM Pseudodaten.

- Bisherige Messungen: Eigenschaften des Higgs–Bosons sind konform mit SM–Vorhersagen, aber BSM–Physik nicht ausgeschlossen.
- Modelle jenseits des Standardmodells: Higgs-Boson kein reiner *CP*-gerade Zustand, sondern Überlagerung von *CP*-geraden und *CP*-ungeraden Zustand.
- In der Gluonfusion können in höherer Ordnung Jets erzeugt werden, deren Eigenschaften sensitiv auf nicht-SM-Beiträge in der Higgs-Gluon-Tensorkopplung sind.
- Der Azimutwinkel $\Delta\phi_{jj}$ wurde als diskriminierende Variable im Kanal H \to ZZ* \to 4 ℓ untersucht.
- Erste Ergebnisse zeigen eine vielversprechende Sensitivität auf das Vorzeichen der anomalen Kopplung.
- Die Sensitivität der Analyse kann unter Einsatz der Matrix-Element-Methode verbessert werden.