Search for displaced dileptons at the ATLAS experiment

Dominik Krauss

Max-Planck-Institut für Physik

March 22, 2018

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- Search for massive long-lived particles decaying to two charged leptons (e or μ)
- Experimental signature: Displaced vertices in inner detector with two lepton tracks
- Sensitive to lifetimes of about 1 ps to 1 ns
- $\bullet\,$ Model independent search interpreted in a supersymmetric and a Z' model
 - \rightarrow Focus of this talk: Supersymmetric model

- Displacement: 2 mm in transverse plane to all pp collisions of event
- Fiducial volume:

- e^+e^- and $e^\pm\mu^\mp$ vertices inside material vetoed using a 3D detector map
- $m_{\rm DV} > 10 \, {
 m GeV}$
- Lepton tracks: $p_{\rm T} > 10 \, {\rm GeV}$
- Match of DV to at least one trigger required: γ (140 GeV), $\gamma\gamma$ (50 GeV) or μ (60 GeV)

- \bullet Boosted vertices (light $\tilde{\chi}^0_1)$ challenging to reconstruct
- Efficiencies significantly larger for $\mu^+\mu^-$ than for e^+e^- due to missing material veto

- Selection criteria suppress background to very small levels
 - \rightarrow Goal for estimates: Get order of magnitude right
- Cosmic muons: $\mathcal{O}(10^{-1})$
 - Cosmic muons sometimes reconstructed as a back-to-back muon pair
 - Events with back-to-back lepton pairs rejected to suppress this background
- Random crossings of two leptons (ie. Standard Model background): $\mathcal{O}(10^{-3})$
 - Badly reconstructed / fake leptons can randomly cross and form a vertex
 - Various processes contribute: $b\bar{b}$, $t\bar{t}$, low mass processes (esp. J/Ψ) and many more

• Cosmic muons sometimes reconstructed as back-to-back muon pairs:

$$ightarrow \Delta R_{
m cosmic} = \sqrt{(\eta_1+\eta_2)^2+(|\Delta \phi|-\pi)^2}pprox 0$$

ullet Cosmic veto: Reject events with lepton pairs failing $\Delta R_{\text{cosmic}} > 0.01$

- Study $\Delta R_{
 m cosmic}$ distributions of $\mu^+\mu^-$ pairs and vertices in data
- Distribution of vertices vanishes before signal region cut of $\Delta R_{\text{cosmic}} = 0.01$
- Idea: Use distribution of pairs to extrapolate vertex distribution to signal region \rightarrow Rescale distribution of pairs by $\int_{0}^{0.004} N(\text{DV}) / \int_{0}^{0.004} N(\text{Pairs})$
- $\bullet~$ Estimate: 0.27 ± 0.14

• Collect all leptons in data passing selection criteria (55k electrons and 36k muons)

- Collect all leptons in data passing selection criteria (55k electrons and 36k muons)
- Select large number of random pairs from this collection

- Collect all leptons in data passing selection criteria (55k electrons and 36k muons)
- Select large number of random pairs from this collection
- Run vertex algorithm on each pair

- Collect all leptons in data passing selection criteria (55k electrons and 36k muons)
- Select large number of random pairs from this collection
- Run vertex algorithm on each pair
- Count number of vertices passing our signal selection

- Collect all leptons in data passing selection criteria (55k electrons and 36k muons)
- Select large number of random pairs from this collection
- Run vertex algorithm on each pair
- Count number of vertices passing our signal selection
- Calculate crossing probability $p_{xing} = \frac{\text{Number of vertices found in this procedure}}{\text{Number of pairs tried}}$

- Collect all leptons in data passing selection criteria (55k electrons and 36k muons)
- Select large number of random pairs from this collection
- Run vertex algorithm on each pair
- Count number of vertices passing our signal selection
- Calculate crossing probability $p_{xing} = \frac{\text{Number of vertices found in this procedure}}{\text{Number of pairs tried}}$
- Estimate = $N(\ell \ell) \cdot p_{xing}$

 $N(\ell \ell) =$ Number of lepton pairs observed in data

- Goal: Evaluate precision of random crossing estimation
- $\bullet\,$ Idea: Perform same procedure as for signal region (SR) but with non-leptonic tracks $\to\,$ Very high statistics
- Differences to SR estimate: No opposite charges and no trigger matching
- Results:

	With material veto	Without material veto
Number of pairs in data	$1.0 imes10^8$	
Avg. crossing probability	$1.6 imes10^{-4}$	2.6×10^{-4}
Predicted vertices	16288	26085
Observed vertices	13564	21780
Overestimate	20.1 %	19.8 %

- 20% overestimate in both cases
 - Estimation works equally well with and without material veto
 - Sufficient precision since only order of magnitude important
- Underestimate for low radii due to remaining background of hadron decays
 - \rightarrow Small effect and not relevant for dilepton case

Channel	$N_{\ell\ell}$	$p_{ m xing}/10^{-5}$	$N_{vx}^{est}/10^{-4}$
ee	$21\pm4.6~({\rm stat.})$	$1.3\pm0.1~({\rm stat.})$	$2.7\pm0.6~({\rm stat.})$
$e\mu$	$10\pm3.2~({\rm stat.})$	$7.0\pm0.2~({\rm stat.})$	$7.0\pm2.2~({\rm stat.})$
$\mu\mu$	$9\pm3.0~({\rm stat.})$	$15.9\pm0.3~({\rm stat.})$	$14.3\pm4.8~({\rm stat.})$
SR			$24.0\pm5.3~({\rm stat.})$

- Electrons have lower crossing probabilities than muons
- Probability especially high for $\mu^+\mu^-$ due to missing material veto
- $\bullet\,$ Random crossing background is of order 10^{-3}
- Negligible compared to cosmic muon background

• $\mathsf{BR}(\tilde{\chi}^0_1 \to e \mu \nu) = \mathsf{BR}(\tilde{\chi}^0_1 \to \mu \mu \nu) = 0.5$

• Everything below dashed horizontal line excluded

- Search for displaced vertices with two oppositely charged leptons
- Model independent search
- Signals: \tilde{q} model with *R*-parity violating decay of $\tilde{\chi}_1^0$ and long-lived Z' model
- Dominant background from cosmic muons
- Background is of order 10^{-1}
- Expected model independent 95% CL cross section limit: 0.09 fb
- Potential signal could be identified very clearly in data