

Truth Studies of Direct Stau-Pair Production with ATLAS Patrick Selle

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Truth Studies of Direct Stau-Pair Production with ATLAS Patrick Selle | Max-Planck-Institut für Physik, München Supervisor: Zinonas Zinonos, Johannes Josef Junggeburth

Introduction

Motivation and goal

Physical Motivation

- In many SUSY models the partner of the third generation is the lightest one.
- Co-annihilation between dark matter and a light stau leads to a dark matter relic density consistent with cosmological observations

Model

- $\mathbf{m}(\tilde{\tau}) = 200 \text{ GeV}, \ \mathbf{m}(\tilde{\chi}_1^0) = 1 \text{ GeV}$
- Integrated luminosity: 80 fb⁻¹

Goal

Finding good discriminating variables against background mainly: Z+jets, W+jets, $t\bar{t}$

Introduction

Event and object selection

$$\tau^{\pm} \rightarrow \ell^{\pm} \bar{\nu}_{\ell} \nu_{\tau} \text{ or } \tau^{\pm} \rightarrow \text{hadrons} + \nu_{\tau}, \quad \ell = e, \mu$$

Event selection

- ▶ $\tau_{had} \tau_{\ell}$
- Opposite charge of τ_{had} and ℓ
- ▶ 0 b-Jets

Object selection

- ▶ Jet: $p_{\rm T}$ >20 GeV, $|\eta| < 2.8$
- ▶ e: $p_{\rm T}>$ 25 GeV, $|\eta|<2.47$
- μ : $p_{\rm T}$ >25 GeV, $|\eta| < 2.5$
- τ : $p_{\rm T}$ >20 GeV, $|\eta| < 2.5$

au-pair decay

Introduction

 $\tilde{\tau}$ -polarization

$$\tilde{\tau}$$
 mass eigenstates: $\begin{pmatrix} \tilde{\tau}_1 \\ \tilde{\tau}_2 \end{pmatrix} = \begin{pmatrix} \cos \theta_{\tilde{\tau}} & \sin \theta_{\tilde{\tau}} \\ -\sin \theta_{\tilde{\tau}} & \cos \theta_{\tilde{\tau}} \end{pmatrix} \begin{pmatrix} \tilde{\tau}_{LH} \\ \tilde{\tau}_{RH} \end{pmatrix} = R_{\tilde{\tau}} \begin{pmatrix} \tilde{\tau}_{LH} \\ \tilde{\tau}_{RH} \end{pmatrix}$

- Different mixing angle $\theta_{\tilde{\tau}}$ has an impact on different quantites
- Three different mixing angles θ_{τ̃} = 0°, 45°, 90°

Multiplicity

Jet multiplicity

Jet multiplicity for $p_T > 20$ GeV. Jet multiplicity for $p_T > 100$ GeV.

High p_T cut on jets with $p_T > 100$ GeV

Patrick Selle (MPP)

Transverse momenta distribution for ℓ and τ

Transverse momenta $p_{\mathsf{T}}(\ell)\text{'s}$

Transverse momenta of $p_T(\tau)$'s

Missing transverse energy and effective mass

Missing transverse energy E^{miss}_T

 $m_{eff} = \mathsf{E}_{\mathsf{T}}^{miss} + \sum\limits_{\ell,\tau,jet} |\textbf{p}_{\mathsf{T}}|$

Visible mass and effective momenta

$$m_{visible} = \sqrt{(P_{\ell} + P_{\tau})^2}$$

 $p_T(\mathbf{p}_\ell + \mathbf{p}_\tau + \mathbf{E}_T^{miss})$

Correlations

 $\Delta \phi$ distribution between $\ell + \tau$ and leading jet

 $\cos \Delta \phi(\ell, \mathsf{E}_{\mathsf{T}}^{\mathsf{miss}}) + \cos \Delta \phi(\tau, \mathsf{E}_{\mathsf{T}}^{\mathsf{miss}})$

Thrust and centrality(ℓ)

9 / 13

Fox-Wolfram moments

Fox-wolfram moments build from Legende polynomial Fractions of the particles to the total energy

Fox-Wolfram moments

Summary

Cuts, significances and outlook

Variable	Cut	
E ^{miss} [GeV]	> 40	
m _{vis} [GeV]	> 80	
m _{eff} [GeV]	> 150	
$\Delta \phi(\ell + \tau, jet)$	< 3.0	
$\sum \cos \Delta \phi$	< 0.0	
Thrust	< 0.95	
Centrality	< 1.0	

Outlook

- Study was perfored at truth level
- Differences between signal and background
- Employ in multivariate analysis

Median discovery significance $=\frac{s}{\sqrt{b}}$

	$\theta_{\tilde{\tau}} = 0^{\circ}$	$\theta_{\tilde{\tau}} = 45^{\circ}$	$\theta_{\tilde{\tau}} = 90^{\circ}$
		0 T 10	
no cuts	0.031 ± 0	0.026 ± 0	0.031 ± 0
with cuts	1.504 ± 0.014	1.280 ± 0.013	1.500 ± 0.026
with cuts+1jet	0.663 ± 0.012	0.487 ± 0.012	0.695 ± 0.032
with cuts+0jet	1.363 ± 0.014	1.080 ± 0.013	1.344 ± 0.025

End

With special thanks to:

Johannes Josef Junggeburth & Zinonas Zinonos

Patrick Selle (MPP) Stau Studies Introduction Multiplicity Kinematics Angular Event Shape Summary 13 / 13

Computation of centrality for leptons:

centrality
$$(\ell) = \frac{A+B}{\sqrt{A^2+B^2}}$$

with

$$A = \frac{\sin \Delta \phi(E_T^{miss}, \ell)}{\sin \Delta \phi(\ell, \tau)}$$

$$B = \frac{\sin \Delta \phi(E_T^{miss}, \tau)}{\sin \Delta \phi(\ell, \tau)}$$

Backup Sphericity

The sphericity tensor is defined as

$$S^{\alpha\beta} = \frac{\sum_{i} p_{i}^{\alpha} p_{i}^{\beta}}{\sum_{i} |\vec{p}_{i}|^{2}}$$

By standard diagonalization of $S^{\alpha\beta}$ one may find three eigenvalues λ_1 , λ_2 and λ_3 (with $\lambda_1 + \lambda_2 + \lambda_3 = 1$). The sphericity of the event is then defined as:

$$S = \frac{3}{2}(\lambda_2 + \lambda_3)$$

Sphericity is essentially a measure of the summed p_{\perp}^2 with respect to the event axis A 2-jet event corresponds to $S \approx 0$ and an isotropic event to $S \approx 1$

Backup

Thrust

The quantity thrust T is defined by

$$T = \max_{|\mathbf{n}|=1} \frac{\sum_{i} |\mathbf{n} \cdot \mathbf{p}_{i}|}{\sum_{i} |\mathbf{p}_{i}|}$$

and the thrust axis \mathbf{v}_1 is given by the **n** vector for which maximum is attained. The allowed range is $1/2 \leq T \leq 1$, with a 2-jet event corresponding to $T \approx 1$ and an isotropic event to $T \approx 1/2$.

Backup

Fox-wolfram moments

The Fox-Wolfram moments H_l , l = 0, 1, 2, ..., are defined by

$$H_l = \sum_{i,j} \frac{|\mathbf{p}_i||\mathbf{p}_j|}{E_{vis}^2} P_l(\cos\theta_{ij})$$

where θ_{ij} is the opening angle between hadrons *i* and *j* and E_{vis} the total visible energy of the event. Note that also autocorrelations, i = j, are included. The $P_l(x)$ are the Legendre polynomials. If

momentum is balanced then $H_1 \equiv 0$. 2-jet events tend to give $H_l \approx 1$ for l even and ≈ 0 for l.

Backup

Transverse mass for lepton und tau

The quantity

$$M_T^2 = 2|\mathbf{p}_T^{(1)}||\mathbf{p}_T^{(2)}|(1 - \cos \phi_{12})$$

is called transverse mass, where $\mathbf{p}_{T}^{(1)} = \mathbf{E}_{T}^{\text{miss}}$ and ϕ_{ij} is defined as the angle between particles *i* and *j* in the transverse plane.

Kinematics

HT(scalar sum) and HT(vectorial sum)

$$\mathsf{HT}_{\mathsf{scal}} = |\mathbf{p}_1^{\ell}| + |\mathbf{p}_1^{\tau}| + \mathsf{E}_{\mathsf{T}}^{\mathsf{miss}} + \sum_{i \neq s} |\mathbf{p}_{\mathsf{T}}|$$

$$\mathsf{HT}_{\mathsf{vec}} = \mathsf{p}_{\mathsf{T}}(\mathbf{p}_{1}^{\ell} + \mathbf{p}_{1}^{\tau} + \mathbf{E}_{\mathsf{T}}^{\mathsf{miss}} + \sum_{jets} \mathbf{p}_{\mathsf{T}})$$

For jets

 p_T distribution of the leading jet

 $\mathit{HT}(\mathit{Jet}) = \sum_{\mathit{jets}} |\mathbf{p_T}|$

Lepton - tau correlations

$$\cos \alpha = \cos \left(\sphericalangle(\ell, \tau) \right)$$

 $\Delta R(\ell,\tau) = \sqrt{(\Delta \phi_{\ell,\tau})^2 + (\Delta \eta_{\ell,\tau})^2}$

Lepton - tau correlations

 $\Delta\eta$ distribution between leptons and taus

 $\Delta\phi$ distribution between leptons and taus

Delta phi

Cosine of the minimum distribution of $\Delta \phi(\ell, E_T^{miss})$ and $\Delta \phi(\tau, E_T^{miss})$

 $\Delta \phi$ distribution between leptons + taus + E_T^{miss} and the leading jet

sphericity and spherocity

$$S^{lphaeta} = rac{\sum_i p_i^{lpha} p_i^{eta}}{\sum_i |ec{p}_i|^2}$$

$$S=\frac{3}{2}(\lambda_2+\lambda_3)$$
 A 2-jet event corresponds to $S\approx 0$ and an isotropic event to $S\approx 1$

It measures the transverse momentum component out of the event plane: a planar event has $A \approx 0$ and an isotropic one $A \approx \frac{1}{2}$

 $A = \frac{3}{2}\lambda_1$

Patrick Selle (MPP) Stau Studies

Linearized sphericity C and linearized sphericity D

 $C = 3(\lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3)$

 ${\it C}$ is used to measure the 3-jet structure and vanishing for a perfect 2-jet event

 $D = 3(\lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3)$

D is used to measure the 4-jet structure and is vanishing for a planar event