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as ete”: motivation in the past and in the future

DIS PDFs (NNLO)

World NNLO average: 1.=0.1185 £ 0.0006
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@ As of 2018 ay is known with
precision of 1% if calculated from
measurements with at least NNLO
precision

@ However, there is a large spread
between measurements

@ More measurements is better

+ measurements with new approached/data are important
on themselves



The energy-energy correlations

dEEC E _
(X E' JN %5((:05)( — cos xjj), with Ejs = Z,N E;, where
E;is partlcle energy and xjj is angle between particles i and j.

B
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@ Not sensitive to schemes
of combinations
@ Resumed NNLL

predictions became
available in 2017
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Analysis components

@ Perturbative and resummed predictions z. Tulipant, A. Kardos and

G. Somogyi, “Energy-energy correlation in electron—positron annihilation at NNLL + NNLO accuracy,”

Eur. Phys. J. C 77 (2017) no.11, 749
e Data: LEP, PEP, PETRA, SLC and TRISTAN

@ Non-perturbative corrections: NLO MC by Sherpa and
Herwig7, analytic hadronisation

21



Available predictions: perturbative part with
CoLoRFuINNLO

ete™ predictions in NNLO exist for some time, however

1/o dX/dx [1/rad]

Q =91.2GeV
as(Q) = 0.118 E
NLO

----- NNLL+NLO (R)
—— @ NNLL+NLO (log-R)

20 40 60 80 100 120

X [deg]

CO|0FFU|NNLO, V. Del Duca et al., “Jet
production in the CoLoRFuINNLO method: event
shapes in electron-positron collisions,” Phys. Rev. D
94 (2016) no.7, 074019 has uniq ue
features

@ precision
@ extendable approach

Resummation has appeared
recently: z Tulipant, A. Kardos and

G. Somogyi, “Energy-energy correlation in
electron—positron annihilation at NNLL + NNLO

accuracy,” Eur. Phys. J. C 77 (2017) no.11, 749



Available predictions: resummation

For many event-shape observables and some jet cross-sections the

resummation exists in logR and R schemes. The EEC resummation
faces some difficulties in both. In solution was found to problems,

deriving predictions from the resummation for EEC momenta. The
resummation is done in the logR scheme.
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b mass corrections

The full NNLO calculations with heavy b quarks are not available.

Simplified approach with NLO calculations.

EEC oprected = (1 — rp) EECNNEOENNLL s EECNNLOY

massless massive
The NNLO* massive predictions are made from massive NLO

coefficients by Zbb4 programme [2] and massless NNLO terms.
The mp(mp) is set to 4.75 GeV.

~

21



o N3LL resummation under study with recently SCET
calculations [3].

e NLO analytic results available [4].

— Analytic

* EVENT2

sin?(x) B
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Available data

The available data covers wide range of energy: /s = 14 — 91 GeV.

Data qualification criteria

[ Experiment | Data \/s(average) | MC /s [ Data events |

SO 1] 91.2(01.2) 912 50000 @ Corrected to charged
OPAL [5] 91.2(91.2) 91.2 336247 d  final
OPAL [6] 91.2(91.2) 91.2 128032 ana neutral Tinal state
L3 [7] 91.2(91.2) 91.2 169700
DELPHI [8] 91.2(91.2) 91.2 120600 @ Corrected for ISR
TOPAZ [9] | 59.0 — 60.0(59.5) 59.5 540
TOPAZ [9] | 52.0 — 55.0(53.3) 53.3 745
TASSO [10] | 38.4 — 46.8(43.5) 43.5 6434 e Full x range
TASSO [10] | 32.0 — 35.2(34.0) 34.0 52118
PLUTO [11] 34.6(34.6) 34.0 6964 measured
JADE [12] 29.0 — 36.0(34.0) 34.0 12719 .
CELLO [13] 34.0(34.0) 34.0 2600 @ No overlap with other
MARKII [14] 29.0(29.0) 29.0 5024
MARKII [14] 29.0(29.0) 29.0 13829 sam pIes
MAC [15] 29.0(29.0) 29.0 65000 )
TASSO [10] | 21.0 — 23.0(22.0) 22.0 1913 @ Sufficient precision
JADE [12] 22.0(22.0) 22.0 1399
CELLO [13] 22.0(22.0) 22.0 2000 - : :
TASSO [10] | 12.4 — 14.4(14.0) 14.0 2704 e Sufficient information
JADE [12] 14.0(14.0) 14.0 2112 on data available

Huge datasets available for combined analysis:
20 datasets from 11 collaborations.
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Non-perturbative models

Two approaches are available on the market: analytic and MC
based. We use both.

Analytic approach MC-based

@ Calculations with @ NLO MC events by particle level
Y. L. Dokshitzer, G. Marchesini and generators to extract with
B. R. Webber, “Nonperturbative point-by-point multiplicative
effects in the energy energy correction factors
correlation,” JHEP 9907 (1999) 012 @ Systematics from multiple

o Involves as moments hadronisation models
at low scales, which e Simultaneously allows to extract

are free parameters. missing correlations of data points
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MC based approach: MC setups

state in NLO precision.

o Default setup "S"': Sherpa2.2.4+4 (Comix, Amegic,
GoSam ME libraries and OLPs) + Lund (Pythia6)
hadronisation

@ Setup for hadronisation systematics: "S¢": Sherpa2.2.4+
(Comix, Amegic, GoSam ME libraries and OLPs) + Ahadic
cluster hadronisation

o Setup for cross-check: "HM": Herwig7.1.1 (Herwig,
Madgraph, GoSam ME libraries and OLPs) + Herwig cluster
hadronisation

Merging scale was chosen to minimise its size impact on parton
level in fit range.
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MC based approach: MC distributions

— OPAL, 91.2GeV
oV

— JADE, 22.0GeV

1/0,dS/dy
1/ouds/dx
1/ouds/dx

@ Good description of data even close to cutoff region.

@ More: the samples were reweighted event-by-event to match

closely the data: log Weyent = Zﬁ’,ﬁ’fl kpin EE Cevent (bin).



MC based approach

: MC hadronisation

= x s
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@ Hadronisation corrections are ratio of hadron to parton level.

@ To avoid binning effects the hadronisation corrections are
parametrised with smooth functions. Note: parametrisation is

valid only in fit range.



MC based approach: correlations

| JADE, /s =22GeV | TOPAZ, \/s =59GeV | OPAL, /s = 91GeV |

I - EOEEENEN ENEn AN e Nk

@ All measurements are provided without correlations.

@ MC samples are used to model correlations between points,

see original Fisher papers [16].
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Fits and uncertainties

a,(Mz)

a,(Mz)

0.160 T T T T
—— NNLO-+NNLL(logR)+S*

0.150[ —> NLO+NNLL(logR)+S*

—— NNLO-+NNLL(logR) +5¢

—— NLO+NNLL(logR)+5¢ T h e
0.140 | Bl
0130 1

oo "]
o

0.120
0.110
0.100 [
0.090L | L L

P T W T S
0.160

—e— NNLO+NNLL(logR)+5*
—&~ NLO+NNLL(logR)+S%
——NNLO-+NNLL(logR)+5¢

0.150

g0~ NLOFNNLL(logR) 45 | o
0.130
0.120 .
0.110
0.100
0.090

=005 —5.005—2.00y—1.00 20.00 5100 2.0 53.00
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uncertainties that were estimated:
Variation of renormalisation scale by
2% (res.)

Variation of resummation scale by
2%2: (ren.)

Variation of matching power 1 or 2:
neglected

Variation of hadronisation model St or
SC: (hadr.)

Fit uncertainty is x2 + 1 criterion from
MINUIT: (exp.)
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Fits

@ The fits are done in different ranges. Ranges:

o Criteria for central result: validity of e 117 —177°
NNLO, hadronisation corrections and 117 — 165 °
resummation. 60 — 165 °

@ Results are insensitive to +5° changes

. 60 — 160 (central)
of fit ranges.
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(Some)Checks

@ Analytic hadronisation @ Herwig7 for hadronisation
o Fit range @ Stability across /s (see below)
@ Power in resummation @ Scheme of b mass treatment
N [ AR RN N T AR RN
= F ~+ NNLO+NNLL(logR)+5* | = F —e— NNLO+NNLL(logR)+5€ |
g oe0p —+ NLO4+NNLL(logR)+8L | g 60 —— NLO+NNLL(logR)+5€
0.150?— — 0.150?— —
0-140; , 0.140; ,
0-130; , 0.130; ,
0.120] : : + : * .* # J{ :, 0.120] + Lo :i
i t e + [ ® e e e e # g‘ ]
0.110 |- B 0.110 [ E
0.100; , 0.100; ,
E O E N ¥Eesgoge E OE N ¥Esgog e
S o = o S =5 = =5
Q7 GeV Q, GeV
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Conclusions

Extraction of as(Mz) from energy-energy correlations in ete™
collisions has been performed with NNLO-+NNLL precision for the
first time using datasets in wide range of centre-of-mass energies.
The results are

as(Mz) = 0.11784 + 0.00019(exp.) = 0.00103( hadr.) - 0.00254(ren.) = 0.00079(res.)
for NNLO+NNLL(logR) scheme and

as(Mz) = 0.12214 + 0.00023(exp.) - 0.00113(hadr.) - 0.00434(ren.) + 0.00294( res.)
for NLO+NNLL(logR) scheme.
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