

Search for supersymmetry in multileptonic final states with collimated τ pairs with the ATLAS detector

Marian Rendel

Max Planck Institute for Physics (Werner-Heisenberg-Institut)

Wednesday 21st March, 2018

Introduction

Search for R-parity violating SUSY in events with at least four leptons

Current Analysis uses data from 2015 and 2016 No sensitivity for low $\tilde{\chi}^0_1$ mass due to collimated τ pairs

Standard τ reconstruction fails for $\Delta {\it R} < 0.4$

ightarrow Use di-au reconstruction to increase sensitivity

Seeds from a jet with R = 1.0 0.35 Vs = 13 TeV $(0.4 \text{ for standard } \tau \text{ reconstruction})$

Di- τ reconstruction: reconstruct two hadronically decaying τ into a single

Originally developed and optimized using boosted Higgs decays

- p_T > 50 GeV (reduced from $p_{\rm T} > 300$ GeV)
- $|\eta| < 2.5$

object

• At least 2 subjets (R = 0.2) with at least one associated track

Reconstruction Efficiency

Flat reconstruction efficiency 60% for $\ensuremath{\rho_{\rm T}}\xspace > 150~{\rm GeV}$

Reconstruction efficiency 80% for $0.2 < \Delta {\rm I\!R} < 0.4$

Di- τ Identification

Rejection of fake di-au from QCD jets, $t\bar{t}$

Performance of the default BDT (optimized with boosted Higgs decays)

 $\mathrm{p_{T}^{di-\tau}} > 300~\mathrm{GeV}$

Limited background separation for $p_{\rm T} > 300 {\rm ~GeV}$

No separation for $p_{\rm T} > 50~{\rm GeV}$

ightarrow Optimize BDT for SUSY

Di-au identification

BDT training using tracking and calorimeter information

- Signal: truthmatched di- τ from SUSY gluino process
- Background: di-au candidates from data (QCD), $t\bar{t}, Z \rightarrow e^+e^-$

Identification Efficiency

signal di- τ : BDT > 0.5

Flat identification efficiency 60% for $\rho_{\rm T} > 150~{\rm GeV}$

Identification efficiency 60% for $0.2 < \Delta {\it R} < 0.4$

Improvement of Fake Di-au rejection

- In $t\bar{t}$: fake Di- τ from b-jets
- ightarrow Remove Di-au if it contains a *b*-jet
 - Reject Di- τ with electrons in subjets

Application to the Four-Lepton Analysis

New region with $N_{\ell} = 2$, $N_{\tau} \leq 1$ and $N_{\text{di-}\tau} \geq 1$

Expected Sensitivity

Improved sensitivity to low LSP masses

- Current fourlepton analysis has no sensitivity to low LSP masses
- Use new di- τ reconstruction for collimated τ pairs
- Di- τ identification optimized for SUSY RPV models
- Improved Sensitivity with the new di-au reconstruction

Plan: use di- τ reconstruction with full run 2 data-set (2015-2018)