

High rate studies of the ATLAS MDT chambers in LHC Run-2

Nicolas Köhler

Max Planck Institute for Physics (Werner-Heisenberg-Institut)

Wednesday 21st March, 2018

•000 000 000 000 0	Introduction ●OOO	Background rates	Resolution OO	Efficiency 000	Summary O	TA+ Ay > it
--------------------	----------------------	------------------	------------------	-------------------	--------------	-------------

The ATLAS muon system

- Consists of precision (MDT, CSC) and trigger (RPC, TGC) chambers
- Coverage up to $|\eta| < 2.7$
- Standalone muon reconstruction inside toroidal magnetic field

JINST 3 (2008) S08003

 $\rightarrow~$ High precision Monitored Drift Tube (MDT) chamber coverage up to

 $|\eta| < 2.0$ in innermost end-cap layer

•000 000 000 000 0	Introduction ●OOO	Background rates	Resolution OO	Efficiency 000	Summary O	TA+ Ay > it
--------------------	----------------------	------------------	------------------	-------------------	--------------	-------------

The ATLAS muon system

- Consists of precision (MDT, CSC) and trigger (RPC, TGC) chambers
- Coverage up to $|\eta| < 2.7$
- Standalone muon reconstruction inside toroidal magnetic field

JINST 3 (2008) S08003

 $\rightarrow\,$ High precision Monitored Drift Tube (MDT) chamber coverage up to $|\eta|<2.0$ in innermost end-cap layer

Introduction	Background rates	Resolution	Efficiency	Summary	
0000					TA+ Agats

- Majority of hits in MDT chambers caused by the background radiation (γ/n) permeating ATLAS cavern
- Highest irradiation regions around the end-cap toroid magnets
- Innermost detector layer in end-cap region (EI) with MDT rate capability not sufficient for HL-LHC

Simulation of the photon flux

CERN-THESIS-2014-091

Introduction	Background rates	Resolution	Efficiency	Summary	
0000					TA+ Agatt

- Majority of hits in MDT chambers caused by the background radiation (γ/n) permeating ATLAS cavern
- Highest irradiation regions around the end-cap toroid magnets
- Innermost detector layer in end-cap region (EI) with MDT rate capability not sufficient for HL-LHC

Expected background rates per drift tube at $\sqrt{s} = 8$ TeV and $L = 7 \cdot 10^{34}$ cm⁻²s⁻¹ in kHz/tube Expected background rate in kHz/tube at $\mathcal{L} = 7 \cdot 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ 12 m У EM 10 BO EE 58 BM 119 125 54 6 вι 50 4 157 2 End-cap CSC magnet 16 18 20

ATL-COM-MUON-2013-011, CERN-THESIS-2014-091

Introduction	Background rates	Resolution	Efficiency	Summary	
0000					MA+Ayait

- Majority of hits in MDT chambers caused by the background radiation (γ/n) permeating ATLAS cavern
- Highest irradiation regions around the end-cap toroid magnets
- Innermost detector layer in end-cap region (EI) with MDT rate capability not sufficient for HL-LHC

Expected background rates per drift tube at $\sqrt{s} = 8$ TeV and $L = 7 \cdot 10^{34}$ cm⁻²s⁻¹ in kHz/tube koround rate in kHz/tube at $\mathcal{L} = 7 \cdot 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ 12 m y 10 PO EE BM 119 125 54 6 вι 4 187 kHz/tube for $2 \cdot 10^{34}$ cm⁻²s⁻ 2 CSC magnet 16

ATL-COM-MUON-2013-011, CERN-THESIS-2014-091

ightarrow Study MDT high-rate phenomena with ho p collision data at $\sqrt{\mathrm{s}}=13\,\mathrm{TeV}$

Introduction	Background rates	Resolution	Efficiency	Summary	
0000					ArAgait

Try to measure

- background rates in innermost end-cap chambers (e.g. chamber EIL1A01)
- spatial resolution of inner MDT chambers
- reconstruction efficiency of inner MDT chambers

in dependence of instantaneous luminosity

ightarrow Require dataset covering a large range of instantaneous luminosities

Introduction	Background rates	Resolution	Efficiency	Summary	
0000					ArAgait

Try to measure

- background rates in innermost end-cap chambers (e.g. chamber EIL1A01)
- spatial resolution of inner MDT chambers
- reconstruction efficiency of inner MDT chambers

in dependence of instantaneous luminosity

 \rightarrow Require dataset covering a large range of instantaneous luminosities

Introduction	Background rates	Resolution	Efficiency	Summary	
0000					MAr Agait

LHC Run-2 pp collision data

- The operation of the LHC in 2017 superseded its expectations
- Ideal preconditions for data-based studies of high-rate MDT phenomena

 \rightarrow Selected 1.5fb $^{-1}$ of full Run-2 dataset covering the full range of

Instantaneous luminosities

Introduction	Background rates	Resolution	Efficiency	Summary	
	000				AL ALLAN
					74+49>1

Rate studies of MDTs - Background hit rate

- Background hit rate can be measured using side bands of the muon drift time spectrum
- Rising edge fitted with modified Fermi function

$$G(t) = p_0 + rac{A_0}{1 + \exp\left(-rac{t-t_o}{\tau_o}
ight)}$$

→ p₀ accounts for background caused by uncorrelated noise or background radiation

 \rightarrow Divide p_0 by number of tubes of the chamber and by number of events to get hit rate per tube

Rate studies of MDTs - Background hit rate

Background hit rate estimated by Fermi-Fit

 \rightarrow Depending on statistics, large fit parameter uncertainties are obtained \rightarrow Try another estimation of the background hit rate

Rate studies of MDTs - Background hit rate

- Looking at drift time spectrum again
- Exclude all hits when a muon is extrapolated to the chamber
- Divide average height of drift time spectrum by number of tubes of the chamber and by number of events without muons extrapolated to the chamber

Introduction	Background rates	Resolution	Efficiency	Summary	6
		00			
					ArAgait

Rate studies of MDTs - Resolution

- Looking at innermost end-cap chamber EIL1A01
- Calculating difference between measured drift radius r(t) per tube and distance between fitted muon track and wire inside tube d(wire,track)
- ightarrow Fit sum of 2 Gaussians¹ and take weighted average of σ_1, σ_2 as resolution

Introduction	Background rates	Resolution	Efficiency	Summary	6
		00			MA+Ayait

Rate studies of MDTs - Resolution

- Looking at innermost end-cap chamber EIL1A01
- Plot measured resolution σ vs. instantaneous luminosity *L* and muon transverse momentum $p_{\rm T}$

 \rightarrow Spatial resolution flat in instantaneous luminosity and muon transverse momentum

ntroduction	Background rates	Resolution	Efficiency	Summary	
0000			000		1 and
					1566931

Rate studies of MDTs - Efficiency

- Combined muon: Combine track from MS and ID (standard method)
- Calorimeter-tagged (CaloTag) muon: Track in ID with small characteristic energy deposit in calorimeter
- Define reconstruction efficiency per chamber as $\epsilon = N_{\text{Matches}}/N_{\text{Probes}}$
 - -- Probe = Number of CaloTag muons extrapolated to chamber
 - -- Match = Number of Combined muons with hits on muon track in chamber within $\Delta R = 0.05$ of CaloTag muon

Rate studies of MDTs - Efficiency

Plot measured efficiency σ vs. instantaneous luminosity L

 \rightarrow Efficiency slightly decreasing (flat) with instantaneous luminosity for innermost (outermost) end-cap chamber

Rate studies of MDTs - Efficiency

 Plot number of hits-on-track (mean value and RMS) vs. instantaneous luminosity L

- \rightarrow Average number of hits on muon track slightly decreasing with
 - instantaneous luminosity for innermost end-cap chamber
- \rightarrow Hit requirement in efficiency definition leads to decreasing efficiency

- Studied resolution and efficiency of MDT chambers as a function of background rates using LHC Run-2 data
- $\rightarrow\,$ Instantaneous luminosities up to ${\it L}=2\cdot 10^{34}\,{\rm cm}^{-2}{\rm s}^{-1}$ similar to HL-LHC conditions
 - Background rates observed in innermost end-cap chambers agree with expectations
 - Spatial resolution is independent of instantaneous luminosity up to $L = 2 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - Slightly decreasing efficiency with increasing instantaneous luminosity for innermost end-cap chamber
- ightarrow Separate hit efficiency from reconstruction efficiency

BACKUP

03/21/2018

The shape of the drift time spectrum

- Compared to an ideal drift time spectrum, a band-like structure is observed
- The spectrum shows a period structure (in 16 of the 25ns/32 bins)

Testbeam data

The shape of the drift time spectrum

- Compared to an ideal drift time spectrum, a band-like structure is observed
- The spectrum shows a period structure (in 16 of the 25ns/32 bins)

Innermost end-cap chamber EIL1A01

Testbeam data

The shape of the drift time spectrum

- Compared to an ideal drift time spectrum, a band-like structure is observed
- The spectrum shows a period structure (in 16 of the 25ns/32 bins)

Innermost end-cap chamber EIL1A01

Nicolas Köhler - ATLAS MDTs at high rates

Used pp collision data for studies

Run	Date	lnst. $L [10^{30} {\rm cm}^{-2} {\rm s}^{-1}]$	Integr. $\mathcal{L}\left[pb^{-1} ight]$
276262	2015, August 16th	356 - 419	6.2
297730	2016, April 28th	150 - 198	3.4
300415	2016, May 28th	3343 - 4562	94.4
309759	2016, October 2nd	5001 - 12658	347.7
325713	2017, June 4th	1757 - 3216	76.3
325790	2017, June 5th	2204 - 2925	40.3
338349	2017, October 16th	6917 - 15696	462.3
339849	2017, November 2nd	6151 - 20614	456.1
			1486.7

 \rightarrow Covering the full range of instantaneous luminosities up to

 ${\it L}=2\cdot 10^{34}\,{\rm cm}^{-2}{\rm s}^{-1}$