RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Switcher-B

Design Update

P. Fischer, I. Peric, Ch. Kreidl Heidelberg University

Timing of OLD Shift Register Readout

- Output = Sel(i) AND Strobe \rightarrow signals on neighbors cannot overlap
- Note: Can turn on 2 rows by injecting 2 ones in shift register
- BUT: Some overlap may be wanted (for speed @ gates)
 - May want to skip rows (interleaved readout mode)

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Proposed NEW Timing

- 3 Modes:
 - 1. Rising Edge (of Strobe for selected ch.) SETS output NEXT RISING edge (DEselected ch.) CLEARS output
 - 2. Rising Edge SETS output NEXT FALLING edge CLEARS output
 - 3. Same as before (for Clear)
- Another possible Mode:
 - 4. SELECT SETS output RISING edge of Strobe CLEARS

Proposed New Timing (with channel skip)

New Timing Discussion

- Advantages:
 - Can skip channels
 - Can produce overlap
- Limitation:
 - Cannot produce an output 'a little bit wider' than sel (minimum width = sel + strobe) This is possible in solution (4), but there, timing is determined by two signals (ShiftClock, Strobe) instead of one.

Consequences for Control signals:

- Must be able to inject 2 Ones in shift register (2 active rows)
- Must be able to have asymmetric clocks
- Must be able to fine-adjust Strobe timing
- (if 4 is used): Relative timing of ShiftClock & Strobe critical

Other Circuit Modifications

- Switcher-B will use HV Switch from Switcher-4
 - High voltage swing
 - No risk of exceeding voltage limits of devices
 - Slower. Need quite large devices to drive 50 pF
- Level Shift will use AC coupling as in Switcher 3
 - No DC power
 - Faster
 - SEU risk small, maybe use Monoflop characteristic
- Internal additional voltages (required in drive circuit)will be generated by Bandgap Reference
- JTAG Interface will use External low voltage supply from DHP (1.8V) + Level shifter

Circuit Status / Schedule

- New Enable Circuit:
 - Simple Circuit has been found & simulated, using only NOR gates
- JTAG Interface is under way. Quite some work, as we do not have rad. Hard Lib for synthesis.
 - Do interface by hand OR
 - Make a small library (← preferred)
- Simple Verilog Code is ready
- Bandgap Schematic done, Simulation very promising
- AC Coupling schematic done
- Schedule:
 - Next MPWs: 10.8 (Europractice) and 17.8 (AMS) too early
 - $2.11 \rightarrow 8.1.$ back safe

^{ruprecht}karls. UNIVERSITÄT HEIDELBERG

Pins / Signals

Signal	Туре	Pins	Traces	Function
CLK	LVDS	2	2	Shift Clock
Serin	LVDS	2	2	
Serout	LVDS	2	-	
Strobes	LVDS	2 + 2	2 + 2	
Vddd, gndd	Floating Supply	2×2	2	
Vhi / Vlo	Switch Voltages	4×2	4	
Sub	Lowest voltage	1	1	
Monitor	Optional	1	1	
JTAG IO	CMOS	4	4	TCK, TMS, TDI, TDO
JTAG_VDD	JTAG IO Supply	1	1	
Sum		29	20	

Chip Geometry

					1000 0
) 9	500		1000	1200.0
3596.0			 @.	<u></u>	
		20 - C	~	*	
	0	8	*	9	
1	1	8	Ŷ	Q	
3008	0	1	8	4	
	0	\$	0	Ø	
1	\$	0	۲	0	
	0		0	0	
2500	•	0	۲	0	
1	0		0	0	
-	8	0	۲	0	
2008	0	•	0	0	
	•	0	۲	0	
1	0	۲	0	0	
			۵	õ	
1500-		8	ø	ō.	
1	8		ě	~	
		~	•	w as	
1000	~	ž	~	~	
	~	~	ž	~	
1	0	8	*	9	
1	0	0	Ŷ	0	
500-	0	0	۲	0	
	0	0	٢	Ø	
-	0	0	۲	0	
L n	0	۲	٢	Ø	
U —					

- Geometry is unchanged:
 - 32 channels, each for GATE and CLEAR
 - 3.6mm × (1.2mm + x)
 - Bump pitch 150μm × 150μm
 - Chip has 4×24 pins, (top/bot 4×4 for control)

Switcher-B

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Balcony Layout

- Christian has established a full DRC and LVS rule file for the HLL Technology
- He has finished the layout of the module side
 - 1.6mm Wide
 - 2 metal levels required
 - Estimated delay bottom top ~ 1ns

Thank you

Switcher-B