ATLAS Operation & Upgrade

MPP Project Review

Sven Menke, MPP München on behalf of the ATLAS Group @MPP

- Introduction
- Operation
- Upgrade for HL-LHC
 - Physics motivation
 - Radiation backgrounds
 - Inner tracker
 - Liquid argon calorimeters
 - Muon system
- Summary & Outlook

17 Dec 2018, MPP

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Denis Salihagic (1965-2018)

In memory of our dear colleague and friend Denis Salihagic who passed away after long illness on April 2nd 2018

S. Menke, MPP München ATLAS Operation & Upgrade MPP Project Review, 17 Dec 2018, MPP 2

ATLAS

about 3000 scientific authors from 181 institutions around the world, representing 38 countries from all the world's populated continents

S. Menke, MPP München

ATLAS Operation & Upgrade

MPP ATLAS group Scientific members

Siggi Bethke (Director)

Muons

Staff

- Hubert Kroha (Project Leader)
- Sandra Kortner (Project Leader, Independent Research Group)
- Oliver Kortner

Active Retiree

• Robert Richter

Post-Docs

- Davide Cieri
- Dominik Duda
- Patrick Rieck
- Zinonas Zinonos PhD Students
- PhD Students
- Katharina EckerPhilipp Gadow
- Andreas Hönle
- Johannes Junggeburth
- Dominik Krauss
- Nicolas Köhler
- Stefan Maschek
- Rainer Röhrig
- Korbinian
 Schmidt-Sommerfeld
- Verena Walbrecht

Master Students

- Catriona Bruce, Šejla Hadžić, Maximilian Klinke, Marian Rendel,
 - Patrick Selle, Maxim
 - Sinner, Makoto

Teshima Bachelor Students

 Florian Henkes, Iris Hydi, Rabea Klaar, Ivan Popov, Nicole Schermer, Justin Skorupa

Calorimetry

Staff

- Sven Menke (Project Leader)
- Teresa Barillari
- Andrey Kiryunin
- Denis Salihagic[†]

Active Retiree

• Peter Schacht

Post-Docs

- Tom McCarthy
- Margherita Spalla

Inner Detector

Staff

 Richard Nisius (Project Leader)

Post-Docs

- Alessandro LaRosa
- Anna Macchiolo
- Ben Pearson

PhD Students

- Julien Beyer
- Natasha Savić

Master Students

Meghranjana
 Chatterjee

Bachelor Students

 Nicolas Baron Perez, Abishek Chikkaballi Ramalingegowda

Computing

Staff

- Stefan Kluth (Project Leader)
- Stefan Stonjek

Post-Docs

- Daniel Britzger
- Cesare Delle Fratte
- Sergio Tafula
- Andrii Verbytskyi
- **PhD Students**
 - Ludovic Scyboz

S. Menke, MPP München

ATLAS Operation & Upgrade

Operation

- **LHC:** pp collisions @ $\sqrt{s} = 13$ TeV in 2018
- > PbPb collisions @ $\sqrt{s_{NN}} = 5 \text{ TeV}$ in 2018 with lower luminosity

ATLAS event display from April 2018 with $Z^0 \rightarrow \mu^+ \mu^-$ candidate $(m_{\mu\mu} = 92.3 \,\text{GeV})$ and 28 additional vertices (~ 60 additional pp interactions)

S. Menke, MPP München

ATLAS Operation & Upgrade

Operation

ATLAS recorded integrated luminosity 61.7 fb⁻¹ in 2018 @ $\sqrt{s} = 13 \,\text{TeV}$

Overall efficiency

Muon reconstruction efficiency

6

Physics Measurements/Searches so far

Cross-section measurements down to $\sim 0.5 \,\text{fb}$ (left) as examples for ATLAS achievements so far

Discovery of the Higgs-Boson, Measurements of Higgs-boson mass and decay channels

Precision top-quark $(\Delta_m < 500 \text{ MeV})$ and W-boson ($\Delta_m = 19 \text{ MeV}$) mass-measurements

- \triangleright O(1 2 TeV) mass-limits in SUSY searches
- Searches for dark-matter and exotic physics beyond the standard model
- See presentation on ATLAS physics results by Tom McCarthy

S. Menke, MPP München

ATLAS Operation & Upgrade

MPP Project Review, 17 Dec 2018, MPP

7

Upgrade **•** Road-map to the HL-LHC

ATLAS Operation & Upgrade

S. Menke, MPP München

Upgrade Simulated tt event @ HL-LHC

Simulated ATLAS event display at $\sqrt{s} = 14$ TeV with t \bar{t} -production (cyan), 2 secondary vertices (yellow) and ~ 200 additional pp-interactions (purple) in the Inner Tracker

S. Menke, MPP München

ATLAS Operation & Upgrade

Physics motivation Measurements to come

Run-3 (2021-2023) expect ~ 150 fb⁻¹ @ $\sqrt{s} = 14$ TeV

W. J.Stirling[†]

- $t\overline{t} + X$ production cross-section, precision top-quark mass measurement
- Higgs
 - Higgs couplings and CP properties, invisible Higgs decays, associate production like ttH
- Searches
 - SUSY 4-lepton channels, long-lived particles, dark-matter, di-boson (VH) resonances, lepton-flavour violation
- Run-4 and beyond (2026-2037) expect $\sim 3000 \, \text{fb}^{-1}$ @ $\sqrt{s} = 14 \, \text{TeV}$ in addition:
 - Standard Model
 - VV scattering (to check if H(125) is sufficient for cross-section regularisation), quartic gauge-boson couplings, precision W mass measurement, precision top-quark mass measurement
 - Higgs
 - Higgs self couplings (expect $\sim 10 \text{ H}(b\overline{b})\text{H}(\gamma\gamma)$ events after cuts (right)), Higgs couplings with high precision, rare Higgs decay channels (like H $\rightarrow \mu^+\mu^-$)
 - Searches
 - beyond standard model Higgs, resonant HH/VV/di-lepton production, dark-matter, SUSY, dark-energy, ...

Radiation backgrounds @ HL-LHC

- Current ATLAS detector was designed for pp collisions at $\sqrt{s} = 14 \text{ TeV}$ in the LHC with an integrated luminosity of 1000 fb $^{-1}$
- For the HL-LHC ATLAS has to stand $3 4 \times$ that \triangleright luminosity
- ATLAS now uses Geant4 predictions made by MPP-group for radiation estimates
- Clockwise from top left: Total Ionisation Dose (TID), Neutron Fluence (NIEL), Flux of > 20 MeV hadrons (SEE)

S. Menke, MPP München

ATLAS Operation & Upgrade

MPP Project Review, 17 Dec 2018, MPP

11

Inner tracker (ITk)

New ITk pixel layout optimised in 2018

- 5 pixel layers up to $|\eta|=4$
- reduced coverage in z by $\sim 15 \text{ cm}$ (compared to TDR shown on top right) to make space for HGTD
- 4-chip modules everywhere except innermost layer
- two innermost layers are replaceable

Main challenges

- hit rate (up to 0.16% per channel) and radiation hardness (up to $1.3 \times 10^{16} n_{eq}/cm^2$ with one exchange)
- number of modules 9416
- number of readout channels $\sim 5 \times 10^9$ (either 50 \times 50 μ m² or 25 \times 100 μ m²)

Total material budget of ITk compared to current Inner Detector (bottom right)

- much reduced number of X_0
- better tracker resolution
- less impact on calorimeters

ITk Pixel technologies

Sensor technology depends on radiation environment

> 3D sensors for innermost layer

- 150 μ m active thickness
- charge collection with vertical electrodes
- single-chip sensors for 1– or 2–chip modules
- exchanged after 2000 fb $^{-1}$ and 1.3 \times 10 16 n_{eq}/cm^2

- Planar sensors for all other layers
 - 100 μm active thickness in 2nd layer;
 150 μm in outer layers
 - 4-chip sensors
 - Maximum NIEL fluence in 2nd layer after 2000 fb⁻¹: $4 \times 10^{15} n_{eq}/cm^2$

S. Menke, MPP München ATLAS Operation & Upgrade

ITk Pixel sensor production @ HLL

- MPP is planning to contribute to second pixel layer with 100 µm thick sensors produced at HLL
- Silicon On Insulator (SOI) technology (top) as reliable method to obtain thin sensors
 - HLL sensors (bottom) are at the moment being used by the RD53 Collaboration as reference to decide which version of the analogue stage to select for the future ATLAS/CMS final chips
 - First results in the community on tracking performance of 50 \times 50 and 25 \times 100 μm^2 pixel cells before and after irradiation obtained by MPP with HLL sensors
- Qualification of the foundries on-going within the ITk pixel sensor market survey
- Start of the pre-production planned in the second half of 2019

ITk Pixel tests

Different designs implemented to study the possible detrimental effect of the biasing structure (only used for QC before chip interconnection) on the hit efficiency

Bias grid grounded

- $50 \times 50 \ \mu m^2$ pixels
- Hit efficiency = 98.5%

- No bias grid
 - $50 \times 50 \ \mu m^2$ pixels
 - Hit efficiency = 99.8%
 - Note change in *z*-scale

S. Menke, MPP München

ATLAS Operation & Upgrade MPP Project Review, 17 Dec 2018, MPP

15

ITk Pixel tests

A good hit efficiency of $\sim 98\%$ is maintained after irradiation to fluences of $5 \times 10^{15} \, n_{eq}/cm^2$

Developed new design where the implant of the innermost ring can be grounded while the grid for testing is left floating after chip interconnection
 The ring implant intercepts the sensor currents from

the sensor edges avoiding the last columns and rows to become noisy

S. Menke, MPP München

ATLAS Operation & Upgrade

Liquid argon calorimeters

Calorimeter hardware remains unchanged

- LAr sampling calorimeters are inherent radiation hard
 - no need to change EMB, EMEC, HEC, FCal

Readout and trigger electronics changes

- Phase-I upgrade (2019–2020) for trigger
- Phase-II upgrade (2024–2026) for readout electronics
 - to meet requirements of new trigger and data-acquisition scheme
 - ► for more radiation tolerance
 - and because of age
 - (> 30 years)

Requirements

- 40 MHz digital readout with 2 gains for all 180 000 cells
- 16 bit dynamic range over 2 gains avoids gain switching in precision physics region
- 10 µs Level-0 trigger latency
- 1 4 MHz Level-0 trigger rate

LAr **MPP** contributions

FCal studies

- signals in FCal will be degraded at HL-LHC (plot to the right) due to
- large HV currents through protection resistors lowering the HV over the LAr gaps
- potential build-up of positive argon ions in the gaps destroying the electric field

HEC readout electronics

- GaAs based ASICs stay in cold since we tested them as rad-hard enough
- need special front-end ASIC since polarity, gain and timing differ from rest of LAr
- need more radiation-hard new low-voltage power supplies

LAr HEC low voltage power supplies

- Power board prototypes
- 2 of the 5 new prototype power boards from Wiener for the Phase-II HEC low voltage power supplies have been tested under Neutron Irradiation at Řež from 10.-12. November 2017
 - passed NIEL levels of at least $5.9 \times 10^{12} n_{eq}/cm^2$ this is $10 \times$ the max level from Geant4 (5× over min. SF of 2)

- 2 of the remaining 3 prototypes have been tested for total ionisation dose at the Fraunhofer Institute in Euskirchen from 18.–21. November 2018
- The aim was to reach a TID of $\sim400~{
 m Gy}$
- From 3D Geant4 simulations the current best estimate of the expected TID after 4000 fb⁻¹ at $\sqrt{s} =$ 14 TeV is \sim 73 \pm 6 Gy

LAr - HEC low voltage power supplies

Co-60 source in Euskirchen

 Hard Gammas from 14.7 TBq Co-60 source in 60 cm distance 10 Gy/h

TID Test from November 2018 in Euskirchen

- Reached > 400 Gy at end of test with all converters healthy (only 1% change in output voltage) (5.5× max. Geant4 (3D))
- top picture shows setup in Euskirchen
- bottom plot shows the 12 DC/DC converter voltages as function of time (irradiation from 15.5 – 55.5 h) with hourly dips from the scheduled power cycles

Next steps

- FPGA for monitoring and control needs to be tested with neutrons and γ s
- Integration with slow control HW from CERN (ELMB2/ELMB++)
- Monitoring- and Distribution-boards need to be designed and constructed
- Design & Construction of Mechanics and Connector-plate

S. Menke, MPP München ATLAS Operation & Upgrade

Muon system > Phase-II upgrades designed and led by MPP (2024–2026)

Expected degradation of RPC performance at high rates would lower trigger efficiency substantially Thin-gap RPCs

First-level muon track trigger

- using MDT chamber information
- $10 \times$ higher selectivity against low p_{\perp} muons

Electronics

new on- and off-detector electronics for new trigger architecture

Trigger Efficiency at the HL-LHC (right)

- Without upgrade: $\sim 60\%$ only
- With sMDTs and new RPCs: $\sim 95\%$

- mitigate inefficiencies of current **RPCs**
- close acceptance gaps of barrel muon trigger

sMDT chambers

- freeing space for new RPCs
- $10 \times$ higher background rate capability

Electronics

new on-chamber electronics to master higher rates

Muon Pilot project

- Installation of 16 new muon stations inside the barrel toroid coils at the boundary to the endcaps (BIS7/8) during LS2 (2019–2020)
- Motivation
 - improving selectivity in barrel-endcap transition region
 - increasing high-rate capability

Technology

S. Menke, MPP München

- integrated sMDT-RPC chambers
- like for full HL-LHC upgrade

MPP contributions

- design and construction of sMDT chambers
 - ► production rate 70 80 tubes/day with 3 technicians
 - need until March 2019 to reach \sim 12000 tubes
- front-end electronics
- thin-gap RPC mechanics

Muon **>** sMDT chamber assembly

Complex chamber geometry with alignment and magnetic field sensors (drawing below)

- Tube insertion and chamber gluing (right)
- Assembly of 63% of the chambers in 2018
- Remaining chambers in 2019

- Measurement of wire positions with feeler gauge on granite table
- Measurement of sagging and torsion angles as function of chamber angle
- Deformations agree with simulation (bottom left)
 - Wire positions accurate to $O(10 \,\mu m)$

Muon Thin-gap RPCs

RPC integration with sMDT chamber

- Twice thinner gas gaps (1 mm) compared to standard RPCs
- Thinner electrodes and highly sensitive amplifiers
- Allows operation at reduced HV (5.8 kV instead of 9.6 kV)
- Rate capability of up to 10 kHz/cm²
- MPP group has focus on industrialisation of RPC production for HL-LHC and future colliders

24

Muon **b** sMDT chambers for HL-LHC

- (2024–2026)
- BIS1-6 chambers very similar to the BIS7/8 sMDT chambers
- Module-0 will be produced by fall 2019

Production of 48 BIS sMDT chambers in 2020-2022 (compare to 16 BIS7/8 chambers in 2018-2019)

S. Menke, MPP München ATLAS Operation & Upgrade

Muon Electronics

Current MDT readout electronics

- readout in groups of 24 tubes
- passive "Hedgehog" cards with coupling capacitors
- active part:
 - $\begin{array}{l} 3 \text{ Amplifier-Shaper-Discriminator (ASD)} \\ \text{chips} \rightarrow \text{TDC} \\ 18 \text{ TDCs} \rightarrow \text{Chamber-Service-Module} \end{array}$
 - $(CSM) \rightarrow off-detector electronics$

Trigger requirements at HL-LHC

- first-level trigger rate will increase from 100 kHz to 1 - 4 MHz
- currents TDCs and CSMs not capable of frequencies above 200 kHz
- new on-chamber electronics needed for operation at HL-LHC

(2024 - 2026)

MPP contributions to new on-chamber MDT electronics

- design and production of new ASD chip
- design of new TDC chip in cooperation with Univ. of Michigan, Ann Arbor
- design of the front-end-electronics-boards with ASDs and TDCs

Muon Electronics

Test of new ASD chip

- spatial resolution as function of hit rate
- new ASD better than legacy ASD in terms of noise, threshold spread and amplification
 new ASD has better spatial resolution

Test from TDC demonstrator

- time resolution as function of TDC channel
- excellent uniformity
- spread is less than ±40 ps

(2024–2026)

Muon **>** 1st level trigger

Motivation

- present 20 GeV 1st level muon trigger (orange line) accepts too many low p_{\perp} < 20 GeV muons due to limited spatial resolution
- including precision MDT information in trigger decision (black points)
 - sharpens turn-on trigger curve
 - reduces trigger rate from 45 85 kHz to
 - \sim 15 kHz in the barrel

MDT-based trigger algorithm (MPP)

- Compact Segment Finder (left)
- seed track from RPC/TGC trigger
- compute two possible position solutions based on seed slope and measured drift radius for each hit
- fill 1D histograms with position solutions
- final segment fit with hits belonging to maximum only

Muon **>** 1st level trigger

Hardware implementation

- 64 trigger processor boards with FPGA processing units on an ATCA blade
- Next year: Design and production of the first full-scale demonstrator

Tests of the segment-finding firmware on a Zynq evaluation board

- Firmware performance validated with software emulation in C++
- Low resource consumption: only one segment finding Zynq needed for trigger board

Summary & Outlook

Operation

- 2018 was year with highest integrated luminosity and highest peak luminosity so far
- Extremely efficient data taking (97.5% good for physics)
- MPP strongly involved in hardware maintenance, shifts, online and offline software, simulation and analysis

Upgrades

- 95% of integrated luminosity still to be collected by ATLAS up to end of HL-LHC in 2037
- Huge upgrade program for ATLAS to improve resolution under much more harsh conditions at the • HL-LHC compared to LHC
- MPP involved in Phase-II upgrades for ITk, LAr calorimeters and Muon system \mathbf{O}
- R&D, Irradiation Tests, Design & Construction of Detectors and Electronics
- Many challenges ahead of us •
- 6 Phase-II TDRs (see below) published in 2018 with major MPP contributions

Many thanks to the technical departments for their support!

