First results of the advanced acceleration experiment AWAKE

- AWAKE-concept: p⁺-driven plasma wakefield
- AWAKE setup
- Results 1: Seeded Self-modulation
- Results 2: Acceleration
- AWAKE upgrade & outlook

Present and future colliders

Possible future RF-driven accelerators:

~0.3-1TeV e⁻-e⁺ or >13TeV p⁺-p⁺

CLIC / ILC: 30-50km or FCC: 80-100km

- → Huge cost (LHC: ~billions);
 → very difficult to get funding
- Advanced accelerators → stronger acceleration → shorter accelerators

Candidates: THz-accelerators, dielectric accelerators, laser-wakefield accelerators (LWFA), beam-driven plasma-wakefield accelerators (PWFA)

Plasma acceleration

- Overcomes break-down limitation of RF-accelerators
- Laser / e⁻ driver: pushes out plasma e⁻'s
- \rightarrow oscillate in & out: plasma oscillation.
- → Accelerating & decelerating field
- \rightarrow relativistic witness beam sees permanent acceleration
- max. field ~several GeV/m
- max. energy: large fraction of drive bunch
 - → staging for high-energy electrons?

p+-driven PWFA

 \rightarrow same with different phase

- problem: short p+-bunches are not available in high quality
- Solution: proton self-modulation

Self-Modulation Instability (SMI)

CERN SPS p⁺ bunch 10cm **long** \rightarrow Not efficient for driving wakefields for the plasma densities of AWAKE $(\lambda_{pe} \approx 2 mm)$

BUT: Transverse Modulation of p⁺ bunch with periodicity λ_{pe} through transverse wakefields!

→"Instability" (Back-coupling)
 Modulation
 →Higher local bunch density
 →Stronger wakefields
 →Resonant growth

A IV-A-KE

A.-M

Seeded Self-Modulation (SSM) for AWAKE

AWAKE: Laser pulse copropagating with the p⁺ bunch

- → Sharp ionation front (plasma density step) seeds the SMI
- → Phase stable modulation of the long proton bunch into micro bunches
- \rightarrow Resonantly driving wakefields by the micro bunches

SPS-bunch (400GeV, 3·10¹¹ p⁺) carries enough energy for single-stage HEP-accelerator

- 10m long **rubidium (Rb) vapor source**, temperature controlled by surrounding Galden fluid
- A 4TW laser ionizing the Rubidium vapor and seeding the self-modulation of the drive bunch
- Driver: 400 GeV proton bunch from CERN's SPS accelerator
- Injection of a witness electron bunch for acceleration

1st AWAKE-goal: SSM-study

2016-17

- 1st goal: Demonstrate Seeded Self-Modulation of a long proton bunch: σ_z>>λ_{pe}~n_e^{-1/2}
- Diagnostics: Two screen measurement
 + OTR on streak camera + CTR
- Observables: Defocused protons + bunch-profile + modulation-frequency

1st AWAKE-goal: SSM

Two-screen BTV:

- Defocused p⁺s with plasma
- ➔ strong defocussing fields from wakefields inside plasma

1st AWAKE-goal: SSM

OTR on streak camera:

- Time-structure of self-modulation: Defocused + microbunches
- Seeding \rightarrow SSM with phase stability

1st AWAKE-goal: SSM

- Microbunches reach all the way along p⁺-bunch! (good for e⁻ acceleration)
- Overlayed pictures → Very phase-stable & reproducible!!

1st AWAKE-goal: SSM

1st AWAKE-goal: SSM

- 1st goal: show Seeded Self-Modulation of a long proton bunch: $\sigma_z >> \lambda_{pe} \sim n_e^{-1/2}$
- Diagnostics: Screens + OTR on streak camera + CTR
- Observables: Defocused protons + bunch-profile + modulation-frequency

2nd AWAKE-goal : e⁻-acceleration

MAX-PLANCK-GESELLSCHAFT

2nd AWAKE-goal : e⁻-acceleration

2017-18

2nd goal: accelerate e⁻s in selfmodulated p⁺-bunch

 First acceleration of e⁻s with p⁺-driven PWFA: up to 2GeV!!
 (injected 10MeV/ conture <2%)

(injected ~19MeV, capture <2%)

- Narrow energy-distribution & quite stable
- Best Accelerating field ~100MeV/m-GeV/m

2nd AWAKE-goal : e⁻-acceleration

2017-18

2nd goal: accelerate e⁻s in selfmodulated p⁺-bunch

 First acceleration of e⁻s with p⁺-driven PWFA: up to 2GeV!!
 (injected 10MeV conture 22%)

(injected ~19MeV, capture <2%)

- Narrow energy-distribution & quite stable
- Best Accelerating field ~100MeV/m-GeV/m

AWAKE Run II

Injection AFTER modulation:
 Split SSM-stage + ~10m acceleration

- 1st goal: Accelerate e⁻-bunch with good beam quality (emittance, E-spread, trapping) and ~GeV/m field
- 2nd goal: Show scalability to long distances
- After: Physics applications \rightarrow fixed target

L=10m

helicon antenna

O. Grulke

water-cooled

Summary

- AWAKE = first p⁺-driven plasma wakefield accelerator
 → prospect of HEP without staging
- 1st goal:
 Demonstration of seeded self-modulation of a long p⁺-bunch
 - Defocused protons + microbunches + modulation-frequency (very reproducible)
- 2nd goal: Acceleration of e^{-'}s for first time with p⁺-driven PWFA (2GeV/~10pC)

Future:

- Long shutdown: prepare Run II
- Run II: SSM-stage + acceleration stage → ~10GeV
 → fixed target

MPP-contribution

- Initiated by MPP-group
- Continuing leadership in collaboration with CERN

Group leaders:

Allen Caldwell Patric Muggli

Post-Docs:

Joshua Moody Mikhail Martyanov Falk Braunmüller Erdem Öz (left)

PhD-students

Matthias Hüther Anna-Maria Bachmann (Ex-MPP, LMU-affiliated) Fabian Batsch (Ex-MPP, LMU-affiliated) Karl Rieger (left)

cam

Master/Bachelor student: Felipe Peña Asmus

Thanks for your attention!

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Additional slides

AWAKE @ CERN

 $\sigma_r \sim 0.2mm$, $\sigma_z \sim 12cm$

→ self-modulation

- SPS-proton bunch (400GeV): ~19kJ;
- LHC-bunch (13TeV): ~112kJ
- → could accelerate a full ILC/Clic e⁻-bunch (~1.6kJ) in a single stage

AWAKE Run II

Split SSM-stage + ~10m acceleration stage

AWAKE Run II

- 1st goal: Accelerate e⁻-bunch with good beam quality (emittance, E-spread, trapping) and ~GeV/m field
- 2nd goal: Show scalability to long distances
- After: Physics applications \rightarrow fixed target

Application: e⁻-p⁺ collider @ LHC ?

Option 1: AWAKE Run II/III vs. LHC-p⁺

- Create ~50 GeV e⁻-beam within 50-100 m of plasma driven by SPS protons → large cross-sections/low luminosity
- Already $E_e = 10$ GeV, $E_p = 7$ TeV, $\sqrt{s} = 530$ GeV exceeds HERA cm energy

Option 2: LHC-driven accelerator

• $E_e = 3$ TeV vs. $E_P = 7$ TeV yields $\sqrt{s} = 9$ TeV (~30 higher than HERA)

G. Xia et al., Nucl. Instrum. Meth. A (2014) 740

p⁺ from SPS: with chicane for merging

lonizing laser:
 Fiber/Ti-Sapphire laser:

 ~100fs, E_{max}=450mJ,
 r₀~1mm, Z_R~5m,
 I_{max}>10x10¹²Wcm⁻²

- Rb: ,I_P=4.177eV, I_{app}~1.7x10¹²Wcm⁻²
- Field ionization → n_e=n_{Rb}
- Virtual line for alignment

SSM-Diagnostics via CTR

SSM-Diagnostics via CTR

Diagnostic setup

Can detect 2nd harmonics of

fmodulation

Results of CTR-analysis

f_{CTR}-dependence on n_{Rb}-gradient

