

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

# Neutrino flavor evolution in supernova: theory and experiment

#### FRANCESCO CAPOZZI (Theoretical Astroparticle Group)





### **MPP contribution**

#### ~100 papers from our astroparticle group: ~10% of total

| HEP                                                                                                           | 108 record trovati - 2                                                                                                                                                                                                                                                                             | 25 ► salta al record: 1                                                                                                                          | La ricerca ha impiegato 0.17 secondi.                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Normal<br>Sagar Air<br>Georg Ra<br>MPP-201                                                                 | I-mode Analysis for Colle<br>ren (Indian Inst. Tech., Mumbai<br>affelt, Tobias Stirner (Munich, M<br>18-224, TIFR-TH-18-25                                                                                                                                                                         | ective Neutrino Oscillatio<br>& Munich, Max Planck Inst.), Fr<br>ax Planck Inst.). Sep 24, 2018.                                                 | ons<br>ancesco Capozzi (Munich, Max Planck Inst.), Sovan Chakraborty (Munich, Max Planck Inst. & Indian Inst. Tech., Guwahati), Basudeb Dasgupta (Tata Inst.),<br>26 pp.      |
| e-Print: a<br>Re<br>Al<br>Record d                                                                            | ITXIV:1809.09137 [hep-ph]   PI<br>aferences   BibTeX   LaTeX(US)<br>DS Abstract Service<br>ettagliato - Citato da 2 record                                                                                                                                                                         | <u>)F</u><br>  <u>LaTeX(EU)</u>   <u>Harvmac</u>   <u>EndNo</u> l                                                                                | <u>e</u>                                                                                                                                                                      |
| 2. Collisio<br>Francesc<br>MPP-201<br>e-Print: a<br>Record d                                                  | onal triggering of fast fla<br>to Capozzi (Munich, Max Planc<br>18-206, TIFR/TH/18-27<br>IrXiv:1808.06618 [hep-ph]   PI<br>eferences   BibTeX   LaTeX(US)<br>DS Abstract Service<br>ettagliato - Citato da 1 record                                                                                | vor conversions of super<br>k Inst.), Basudeb Dasgupta (Tat<br><u>)F</u><br>  <u>LaTeX(EU)</u>   <u>Harvmac</u>   <u>EndNot</u>                  | rnova neutrinos<br>a Inst.), Alessandro Mirizzi (Bari U. & INFN, Bari), Manibrata Sen (Tata Inst.), Günter Sigl (Hamburg U., Inst. Theor. Phys. II). Aug 20, 2018. 6 pp.<br>e |
| 3. Model-<br>Francesc<br>Publisher<br>TIFR/TH/<br>DOI: <u>10.1</u><br>e-Print: <u>a</u><br><u>Record d</u>    | independent diagnostic<br>to Capozzi (Munich, Max Planc<br>d in Phys.Rev. D98 (2018) no.0<br>/18-15, MPP-2018-147, TIFR-T<br>1103/PhysRevD.98.063013<br>arXiv:1807.00840 [hep-ph]   PL<br>eferences   BibTeX   LaTeX(US)<br>DS Abstract Service; Link to Artist<br>ettagliato - Citato da 1 record | of self-induced spectral (<br>k Inst.), Basudeb Dasgupta (Tat<br>6, 063013<br>H-18-15<br>DF<br>  LaTeX(EU)   Harvmac   EndNot<br>cle from SCOAP3 | equalization versus ordinary matter effects in supernova neutrinos<br>a Inst.), Alessandro Mirizzi (Bari U. & INFN, Bari). Jul 2, 2018. 16 pp.                                |
| 4. Flavor-<br>Irene Tan<br>Publisher<br>DOI: <u>10.3</u><br>e-Print: <u>a</u><br><u>Au</u><br><u>Record d</u> | dependent neutrino ang<br>nborra (Bohr Inst.), Lorenz Hue<br>d in Astrophys.J. 839 (2017) 1<br>3847/1538-4357/aa6a18<br>IrXiv:1702.00060 [astro-ph.HE<br>aferences   BibTeX   LaTeX(US)<br>DS Abstract Service<br>ettagliato - Citato da 17 record                                                 | ular distribution in core-<br>depohl (Garching, Max Planck I<br>32<br>]   PDF<br>  LaTeX(EU)   Harvmac   EndNot                                  | collapse supernovae<br>nst.), Georg Raffelt (Munich, Max Planck Inst.), Hans-Thomas Janka (TUM-IAS, Munich). Jan 31, 2017. 10 pp.                                             |
| 5. Fast Pa<br>Ignacio Ia                                                                                      | airwise Conversion of Su<br>zaguirre, Georg Raffelt (Munich                                                                                                                                                                                                                                        | pernova Neutrinos: A Di<br>Max Planck Inst.), Irene Tambo                                                                                        | spersion-Relation Approach<br>orra (Bohr Inst.). Oct 5, 2016. 6 pp.                                                                                                           |

Published in Phys.Rev.Lett. 118 (2017) no.2, 021101

# Why do we care?

Understanding conversions ⇔ correct interpretation of SNv signal



Francesco Capozzi - Theoretical Astroparticle Group

# Why do we care?

Flavour conversions alter the neutrino heating of the shock



Francesco Capozzi - Theoretical Astroparticle Group

# Why do we care?

#### Flavour conversions alter the nucleosynthesis processes

















#### Self induced slow conversions









### Self induced fast conversions









## How to study self-induced conversions

#### - Numerical Simulations

#### - Normal mode analysis

#### - Experimentally?

$$(\partial_t + \hat{\mathbf{p}} \cdot \partial_{\mathbf{x}}) \varrho_{\mathbf{p}} = -i[\mathbf{H}_{\mathbf{p}}, \varrho_{\mathbf{p}}] + \mathcal{C}[\varrho]$$

# $(\partial_t + \hat{\mathbf{p}} \cdot \partial_{\mathbf{x}}) \varrho_{\mathbf{p}} = -i[\mathsf{H}_{\mathbf{p}}, \varrho_{\mathbf{p}}] + \mathcal{C}[\varrho]$

 $(\partial_t + \hat{\mathbf{p}} \cdot \partial_{\mathbf{x}})\varrho_{\mathbf{p}} = -i[\mathsf{H}_{\mathbf{p}}, \varrho_{\mathbf{p}}] + \mathcal{C}[\varrho]$ 

$$(\partial_t + \hat{\mathbf{p}} \cdot \partial_{\mathbf{x}}) \varrho_{\mathbf{p}} = -i[\mathbf{H}_{\mathbf{p}}, \varrho_{\mathbf{p}}] + \mathcal{C}[\varrho]$$

Only solvable with some approximations

$$(\partial_t + \hat{\mathbf{p}} \cdot \partial_{\mathbf{x}}) \varrho_{\mathbf{p}} = -i[\mathbf{H}, \varrho_{\mathbf{p}}] + \mathcal{C}[\varrho]$$

Only solvable with some approximations

No conversions: study supernova explosion

$$(\partial_t + \hat{\mathbf{p}} \cdot \partial_\mathbf{x})\varrho_\mathbf{p} = -i[\mathbf{H}_\mathbf{p}, \varrho_\mathbf{p}] + \mathcal{O}_\mathbf{p}$$

#### Only solvable with some approximations

#### No collisions: study flavor conversions

# Numerical simulations: fast conversions

Fast conversions  $\Leftrightarrow$  different angular distributions of  $\nu_e$  and  $\overline{\nu}_e$ 



Favorable conditions are expected before  $v_e$  decoupling

## Numerical simulations: fast conversions

Fast conversions must be simulated with collisions



Collision rate is much smaller than conversion rate ( $\Gamma \ll \mu$ ). Collisions generate fast conversion, but do not suppress them

# Numerical simulations: fast conversions



Francesco Capozzi - Theoretical Astroparticle Group

## How to study self-induced conversions

#### - Numerical Simulations

#### - Normal mode analysis

#### - Experimentally?

 $\varrho_{\mathbf{v}} \propto \begin{pmatrix} s_{\mathbf{v}}(t,x) & S_{\mathbf{v}}(t,x) \\ S_{\mathbf{v}}^{*}(t,x) & -s_{\mathbf{v}}(t,x) \end{pmatrix}$ 

occupation numbers

![](_page_30_Picture_2.jpeg)

 $S_{\mathbf{v}}(t,x)$ (t, x)

#### occupation numbers

occupation numbers

![](_page_31_Picture_2.jpeg)

flavour coherence

flavour coherence

![](_page_31_Picture_5.jpeg)

#### occupation numbers

$$\varrho_{\mathbf{v}} \propto \begin{pmatrix} s_{\mathbf{v}}(t,x) & S_{\mathbf{v}}(t,x) \\ S_{\mathbf{v}}^{*}(t,x) & -s_{\mathbf{v}}(t,x) \end{pmatrix}$$

Neutrinos are produced in flavour eigenstates  $s_{\mathbf{v}}(t,x) \simeq 1$ 

Standard oscillations suppressed by strong matter effects

$$S_{\mathbf{v}}(t,x) \ll 1$$

Self induced conversions can introduce a rapid growth of S

$$S_{\mathbf{v}}(t,\mathbf{x}) = Q_{\mathbf{v}}e^{i(\mathbf{k}\cdot\mathbf{x}-\omega t)}$$

Self induced conversions can introduce a rapid growth of S

$$S_{\mathbf{v}}(t,\mathbf{x}) = Q_{\mathbf{v}}e^{i(\mathbf{k}\cdot\mathbf{x}-\omega t)}$$

#### DISPERSION RELATION

$$D(\omega, k) = 0$$

I. Izaguirre, G. Raffelt and I. Tamborra, Phys. Rev. Lett. 118 (2017) no.2, 021101 F. Capozzi, B. Dasgupta, E. Lisi, A. Marrone and A. Mirizzi, Phys. Rev. D 96 (2017) no.4, 043016 S. Airen, F. Capozzi, S. Chakraborty, B. Dasgupta, G. Raffelt and T. Stirner, arXiv:1809.09137

Self induced conversions can introduce a rapid growth of S

$$S_{\mathbf{v}}(t,\mathbf{x}) = Q_{\mathbf{v}}e^{i(\mathbf{k}\cdot\mathbf{x}-\omega t)}$$

#### DISPERSION RELATION

$$D(\omega, k) = 0$$

I. Izaguirre, G. Raffelt and I. Tamborra, Phys. Rev. Lett. 118 (2017) no.2, 021101 F. Capozzi, B. Dasgupta, E. Lisi, A. Marrone and A. Mirizzi, Phys. Rev. D 96 (2017) no.4, 043016 S. Airen, F. Capozzi, S. Chakraborty, B. Dasgupta, G. Raffelt and T. Stirner, arXiv:1809.09137

# $\omega, k \in \mathbb{C} \implies \text{FLAVOUR INSTABILITY}$
## Normal mode analysis: future work

#### Extend analysis to more complicated (multi-D) models

F. Capozzi, G. Raffelt, T. Stirner [MPP astro-partilce group]

### Normal mode analysis: future work

#### Extend analysis to more complicated (multi-D) models

F. Capozzi, G. Raffelt, T. Stirner [MPP astro-partilce group]

#### Apply analysis to real supernova simulation and look for instabilities

F. Capozzi, B. Dasgupta, H.-T. Janka, R. Glas, A. Mirizzi, M. Sen

#### How to study self-induced conversions

#### - Numerical Simulations

#### - Normal mode analysis

#### - Experimentally?

Experiments can distinguish flavour conversion scenarios?

| Scenario      | Mass Ordering | $P_{ee}$                       | $\bar{P}_{ee}$                  |
|---------------|---------------|--------------------------------|---------------------------------|
| ME            | NO            | 0                              | $\cos^2 \theta_{12} \simeq 0.7$ |
| $\mathbf{ME}$ | IO            | $\sin^2 	heta_{12} \simeq 0.3$ | 0                               |
| $\mathbf{FE}$ | either        | $1/3\simeq 0.33$               | $1/3\simeq 0.33$                |

ME = Matter effects (MSW)

#### FE = flavour equalisation

We use three detection channels



#### v-proton elastic scattering (pES)

$$\vec{v}_{e,\mu,\tau} + p \longrightarrow \vec{v}_{e,\mu,\tau} + p$$

## $F_{\rm pES}(E_{\nu}) = F_{\nu_e}(E_{\nu}) + F_{\bar{\nu}_e}(E_{\nu}) + 4F_{\nu_x}(E_{\nu})$

#### We use three detection channels



#### **inverse** $\beta$ **decay** (IBD) $\overline{\nu}_e + p \longrightarrow e^+ + n$

## $F_{\rm IBD}(E_{\nu}) = F_{\bar{\nu}_e}(E_{\nu})\bar{P}_{ee} + F_{\nu_x}(E_{\nu})(1-\bar{P}_{ee})$

We use three detection channels



v charged-current on <sup>40</sup>Ar (ArCC)

 $v_e + {}^{40}Ar -> e^- + {}^{40}K^*$ 

## $F_{\rm ArCC}(E_{\nu}) = F_{\nu_e}(E_{\nu})P_{ee} + F_{\nu_x}(E_{\nu})(1 - P_{ee})$

Assume we are in normal mass ordering. We define:

$$R = \frac{F_{\rm pES}}{F_{\rm ArCC}} \qquad \qquad x = \frac{F_{\nu_e}^0}{F_{\nu_x}^0} \le 1 \qquad \qquad \bar{x} = \frac{F_{\bar{\nu}_e}^0}{F_{\nu_x}^0} \le 1$$

Assume we are in normal mass ordering. We define:

$$R = \frac{F_{\text{pES}}}{F_{\text{ArCC}}} \qquad x = \frac{F_{\nu_e}^0}{F_{\nu_x}^0} \le 1 \qquad \bar{x} = \frac{F_{\bar{\nu}_e}^0}{F_{\nu_x}^0} \le 1$$
$$R_{\text{ME}} = \begin{cases} 4 \ x, \bar{x} \ll 1 \\ 5 \ x \ll 1, \text{ and } \bar{x} \lesssim 1 \\ 6 \ x \lesssim \bar{x} \lesssim 1 \end{cases}, \qquad R_{\text{FE}} = \begin{cases} 6 \ x, \bar{x} \ll 1 \\ 7.5 \ x \ll 1, \text{ and } \bar{x} \lesssim 1 \\ 6 \ x \lesssim \bar{x} \lesssim 1 \end{cases}$$

Assume we are in normal mass ordering. We define:

$$R = \frac{F_{\text{pES}}}{F_{\text{ArCC}}} \qquad x = \frac{F_{\nu_e}^0}{F_{\nu_x}^0} \le 1 \qquad \bar{x} = \frac{F_{\bar{\nu}_e}^0}{F_{\nu_x}^0} \le 1$$
$$R_{\text{ME}} = \begin{cases} 4 \ x, \bar{x} \ll 1 \\ 5 \ x \ll 1, \text{ and } \bar{x} \lesssim 1 \\ 6 \ x \lesssim \bar{x} \lesssim 1 \end{cases}, \qquad R_{\text{FE}} = \begin{cases} 6 \ x, \bar{x} \ll 1 \\ 7.5 \ x \ll 1, \text{ and } \bar{x} \lesssim 1 \\ 6 \ x \lesssim \bar{x} \lesssim 1 \end{cases}$$

#### **R > 6 disfavours "matter effects only" scenario**

Assume we are in normal mass ordering. We define:

$$R = \frac{F_{\text{pES}}}{F_{\text{ArCC}}} \qquad x = \frac{F_{\nu_e}^0}{F_{\nu_x}^0} \le 1 \qquad \bar{x} = \frac{F_{\bar{\nu}_e}^0}{F_{\nu_x}^0} \le 1$$
$$R_{\text{ME}} = \begin{cases} 4 \ x, \bar{x} \ll 1 \\ 5 \ x \ll 1, \text{ and } \bar{x} \lesssim 1 \\ 6 \ x \lesssim \bar{x} \lesssim 1 \end{cases}, \qquad R_{\text{FE}} = \begin{cases} 6 \ x, \bar{x} \ll 1 \\ 7.5 \ x \ll 1, \text{ and } \bar{x} \lesssim 1 \\ 6 \ x \lesssim \bar{x} \lesssim 1 \end{cases}$$

R > 6 disfavours "matter effects only" scenario R < 6 disfavours "flavour equalisation" scenario

Assume we are in normal mass ordering. We define:

$$\bar{R} = \frac{F_{\text{pES}}}{F_{\text{IBD}}} \qquad x = \frac{F_{\nu_e}^0}{F_{\nu_x}^0} \le 1 \qquad \bar{x} = \frac{F_{\bar{\nu}_e}^0}{F_{\nu_x}^0} \le 1$$

Assume we are in normal mass ordering. We define:

$$\bar{R} = \frac{F_{\text{pES}}}{F_{\text{IBD}}} \qquad x = \frac{F_{\nu_e}^0}{F_{\nu_x}^0} \le 1 \qquad \bar{x} = \frac{F_{\bar{\nu}_e}^0}{F_{\nu_x}^0} \le 1$$
$$\bar{R}_{\text{ME}} = \begin{cases} 13.3 \ x, \bar{x} \ll 1 \\ 5 \ x \ll 1, \text{ and } \bar{x} \lesssim 1 \\ 6 \ x \lesssim \bar{x} \lesssim 1 \end{cases}, \qquad \bar{R}_{\text{FE}} = \begin{cases} 6 \ x, \bar{x} \ll 1 \\ 5 \ x \ll 1, \text{ and } \bar{x} \lesssim 1 \\ 6 \ x \lesssim \bar{x} \lesssim 1 \end{cases}$$

Assume we are in normal mass ordering. We define:

$$\bar{R} = \frac{F_{\text{pES}}}{F_{\text{IBD}}} \qquad x = \frac{F_{\nu_e}^0}{F_{\nu_x}^0} \le 1 \qquad \bar{x} = \frac{F_{\bar{\nu}_e}^0}{F_{\nu_x}^0} \le 1$$
$$\bar{R}_{\text{ME}} = \begin{cases} 13.3 \ x, \bar{x} \ll 1 \\ 5 \ x \ll 1, \text{ and } \bar{x} \lesssim 1 \\ 6 \ x \lesssim \bar{x} \lesssim 1 \end{cases}, \qquad \bar{R}_{\text{FE}} = \begin{cases} 6 \ x, \bar{x} \ll 1 \\ 5 \ x \ll 1, \text{ and } \bar{x} \lesssim 1 \\ 6 \ x \lesssim \bar{x} \lesssim 1 \end{cases}$$

#### **R** > 6 disfavours "flavour equalization" scenario

Assume we are in normal mass ordering. We define:

$$\bar{R} = \frac{F_{\text{pES}}}{F_{\text{IBD}}} \qquad x = \frac{F_{\nu_e}^0}{F_{\nu_x}^0} \le 1 \qquad \bar{x} = \frac{F_{\bar{\nu}_e}^0}{F_{\nu_x}^0} \le 1$$
$$\bar{R}_{\text{ME}} = \begin{cases} 13.3 \ x, \bar{x} \ll 1 \\ 5 \ x \ll 1, \text{ and } \bar{x} \lesssim 1 \\ 6 \ x \lesssim \bar{x} \lesssim 1 \end{cases}, \qquad \bar{R}_{\text{FE}} = \begin{cases} 6 \ x, \bar{x} \ll 1 \\ 5 \ x \ll 1, \text{ and } \bar{x} \lesssim 1 \\ 6 \ x \lesssim \bar{x} \lesssim 1 \end{cases}$$

#### $\overline{R} > 6$ disfavours "flavour equalization" scenario $\overline{R} \sim 5 - 6$ leads to degeneracy between scenarios

Three complimentary ways of studying flavour conversions:

Three complimentary ways of studying flavour conversions:

1) we can use "brute force" numerical simulations

Three complimentary ways of studying flavour conversions:

1) we can use "brute force" numerical simulations

2) we can use normal mode analysis

Three complimentary ways of studying flavour conversions:

1) we can use "brute force" numerical simulations

2) we can use normal mode analysis

3) real data can in principle exclude some scenario

Three complimentary ways of studying flavour conversions:

1) we can use "brute force" numerical simulations

2) we can use normal mode analysis

3) real data can in principle exclude some scenario

#### Synergy with SN explosion simulators is required

# Thank you

Francesco Capozzi - Max Planck Institute For Physics



Francesco Capozzi - Max Planck Institute For Physics

Fast conversions  $\Leftrightarrow$  different angular distributions of  $\nu_e$  and  $\overline{\nu}_e$ 



Fast conversions  $\Leftrightarrow$  different angular distributions of  $\nu_e$  and  $\overline{\nu}_e$ 



Fast conversions  $\Leftrightarrow$  different angular distributions of  $\nu_e$  and  $\overline{\nu}_e$ 



Favorable conditions are expected before  $v_e$  decoupling

#### Flavour conversions: why study them?

#### Impact on neutrino heating of the shock



#### Flavour conversions: why study them?

#### Impact on nucleosynthesis (r-process)



## Normal mode analysis

Self induced conversions can introduce a rapid growth of S



## Normal mode analysis

Self induced conversions can introduce a rapid growth of S



Simulation with toy model in 1 spatial + 1 temporal dimensions



After generating fast conversions, collisions are unimportant

#### **SN fluxes: parametrization**

#### We adopt the following parametrisation:

$$F^{0}_{\nu}(E) = \Phi^{0}_{\nu} f^{0}_{\nu}(E)$$

$$f_{\nu}^{0}(E) = \frac{1}{\langle E_{\nu} \rangle} \frac{(1 + \alpha_{\nu})^{1 + \alpha_{\nu}}}{\Gamma(1 + \alpha_{\nu})} \left(\frac{E}{\langle E_{\nu} \rangle}\right)^{\alpha_{\nu}} \exp\left[-(1 + \alpha_{\nu})\frac{E}{\langle E_{\nu} \rangle}\right]$$

$$\alpha_{\nu} = \frac{2\langle E_{\nu}\rangle^2 - \langle E_{\nu}^2\rangle}{\langle E_{\nu}^2\rangle - \langle E_{\nu}\rangle^2}$$

[1] M. Keil, G. G. Raffelt, and H.-T. Janka, Astrophys. J. 590, 971–991 (2003)

#### **SN fluxes: parametrization**

#### List of fit parameters for W and G models

| Model | $\langle E_{\nu_e} \rangle \ (\text{MeV})$       | $\langle E_{\nu_x} \rangle \ ({\rm MeV})$     | $\Phi_{\nu_e}(	imes 10^{56})$       | $\Phi_{ u_x}(	imes 10^{56})$        | $lpha_{ u_e}$   | $lpha_{ u_x}$   |
|-------|--------------------------------------------------|-----------------------------------------------|-------------------------------------|-------------------------------------|-----------------|-----------------|
| W     | 9.5                                              | 15.6                                          | 8.53                                | 3.13                                | 3.4             | 2.0             |
| G     | 10.9                                             | 14.0                                          | 5.68                                | 2.67                                | 3.1             | 2.5             |
|       |                                                  |                                               |                                     |                                     |                 |                 |
| Model | $\langle E_{\bar{\nu}_e} \rangle \ (\text{MeV})$ | $\langle E_{\bar{\nu}_x} \rangle ~({ m MeV})$ | $\Phi_{\bar{\nu}_e}(	imes 10^{56})$ | $\Phi_{\bar{\nu}_x}(	imes 10^{56})$ | $lpha_{ar u_e}$ | $lpha_{ar u_x}$ |
| W     | 11.6                                             | 15.6                                          | 7.51                                | 3.13                                | 4.0             | 2.0             |
| G     | 13.2                                             | 14.0                                          | 4.11                                | 2.67                                | 3.3             | 2.5             |

## JUNO: v-proton elastic scattering (pES)

$$(\overline{\nu}_{e,\mu,\tau} + p - \overline{\nu}_{e,\mu,\tau} + p)$$

$$\frac{dN_{\rm pES}}{dE_{\rm vis}} = N_p \int_0^{+\infty} dT'_p \frac{dT_p}{dT'_p} W(T'_p, E_{\rm vis}) \int_{E_\nu^0}^\infty dE_\nu F_{\rm pES}(E_\nu) \frac{d\sigma_{\rm pES}(E_\nu, T_p)}{dT_p}$$

$$F_{\rm pES} \equiv 4F_{\nu_x}^0 + F_{\bar{\nu}_e}^0 + F_{\nu_e}^0$$

$$W(T'_p, E_{\text{vis}}) = \frac{\exp\left(-\frac{(T'_p - E_{\text{vis}})^2}{2\sigma_E^2}\right)}{\sqrt{2\pi}\sigma_E}$$

$$\frac{\sigma_E}{E_{\rm vis}} = 0.03 \sqrt{E_{\rm vis}/{\rm MeV}}$$

### Hyper-Kamiokande: inverse β decay

$$\overline{v}_e + p \longrightarrow e^+ + n$$

$$\frac{dN_{\rm IBD}}{dE_{\rm vis}} = N_p \int_{E_T}^{\infty} dE_{\nu} F_{\rm IBD}(E_{\nu}) \sigma_{\rm IBD}(E_{\nu}) W(E_{\nu} - 0.782 \text{ MeV}, E_{\rm vis})$$

$$F_{\rm IBD} \equiv \begin{cases} 0.7F_{\bar{\nu}_e}^0 + 0.3F_{\nu_x}^0 \\ F_{\nu_x}^0 \\ 0.33F_{\bar{\nu}_e}^0 + 0.66F_{\nu_x}^0 \end{cases}$$

matter effects only, with NO matter effects only, with IO flavor eq.

$$\frac{\sigma_E}{E_{\rm vis}} = 0.6\sqrt{E_{\rm vis}/{\rm MeV}}$$

## DUNE: v-CC scattering on <sup>40</sup>Ar (ArCC)

$$v_e + {}^{40}Ar -> e^- + {}^{40}K^*$$

## $\frac{dN_{\rm ArCC}}{dE_{\rm vis}} = N_{\rm Ar} \sum_{i=1}^{N_{\rm ex}} \int_0^\infty dE_\nu F_{\rm ArCC}(E_\nu) \sigma_{\rm ArCC}^i(E_\nu) W(E_{\rm vis}, T_e)$

$$F_{\rm ArCC} \equiv \begin{cases} F_{\nu_x}^0 \\ 0.3F_{\nu_e}^0 + 0.7F_{\nu_x}^0 \\ 0.33F_{\nu_e}^0 + 0.66F_{\nu_x}^0 \end{cases}$$

matter effects only, with NO matter effects only, with IO flavor equalization

$$\sigma_E = 0.11 \sqrt{E_{\rm vis}/{\rm MeV}} + 0.02 E_{\rm vis}/{\rm MeV}$$

## **Reconstructing v flux from pES**

We define the extrema and midpoint for the neutrino energy bins as  $[E^i_{\nu}, E^{i+1}_{\nu}]$  and  $\overline{E}^i_{\nu}$ , respectively, where  $E^i_{\nu} = \sqrt{T^i_p m_p/2}$ 

$$\frac{d\tilde{F}_{\rm pES}}{dE_{\nu}}\bigg|_{\bar{E}_{\nu}^{N}} = \frac{N_{\rm pES}^{N}}{K_{NN}}$$

$$\frac{d\tilde{F}_{\text{pES}}}{dE_{\nu}}\bigg|_{\bar{E}_{\nu}^{i}} = \left(N_{\text{pES}}^{i} + \sum_{j>i} \left.\frac{d\tilde{F}_{\text{pES}}}{dE_{\nu}}\bigg|_{\bar{E}_{\nu}^{j}}K_{ij}\right)/K_{i,i},$$

$$K_{i,j} = N_p \Delta T_p^{\prime i} \left. \frac{dT_p}{dT_p^{\prime i}} \right|_{\bar{T}_p^{\prime i}} \left. \frac{d\sigma_{\text{pES}}(E_\nu, T_p)}{dT_p} \right|_{(\bar{T}_p^{\prime i}, \bar{E}_\nu^j)}$$
#### **Reconstructing v flux from IBD and ArCC**

$$\frac{d\tilde{F}_{\rm IBD}}{dE_{\nu}}\bigg|_{\bar{E}_{i}} = \frac{1}{N_{p}\sigma_{\rm IBD}^{\rm tot}(\bar{E}_{i})} \frac{N_{\rm IBD}^{i}}{\Delta E_{\rm vis}^{i}}$$

$$\frac{d\tilde{F}_{\rm ArCC}}{dE_{\nu}}\bigg|_{\bar{E}_{i}} = \frac{1}{N_{\rm Ar}\sigma_{\rm ArCC}^{\rm tot}(\bar{E}_{i})} \frac{N_{\rm ArCC}^{i}}{E_{\rm vis}^{i}}$$

## Flux ratios: R and R, normal ordering



## Flux ratios: R and R, inverted ordering



## SN fluxes: Wroclaw/Basel 1D model (W)



Francesco Capozzi - Theoretical Astroparticle Group

## SN fluxes: Garching 1D model (G)

#### (Un)Oscillated (Anti)Neutrino energy fluxes



#### Smaller differences compared to W model

Francesco Capozzi - Theoretical Astroparticle Group

# 1) Three SNv detection channels

# JUNO: v-proton elastic scattering (pES)



#### JUNO is sensitive mainly to $v_x$ and to $E_v > 25$ MeV. No dependence on flavour conversions

#### Hyper-Kamiokande: inverse β decay



#### Hyper-K is sensitive to $\overline{\nu}_e$

#### DUNE: v-CC scattering on <sup>40</sup>Ar (ArCC)



#### DUNE is sensitive to $v_e$

# 2) Reconstructing oscillated v-fluxes

#### **Reconstructing v flux from pES**



[1] H. L. Li, Y. F. Li, M. Wang, L. J. Wen and S. Zhou, Phys. Rev. D 97 (2018) no.6, 063014
[2] B. Dasgupta and J. F. Beacom, Phys. Rev. D 83 (2011) 113006



Similar reconstruction method applies to IBD and ArCC

# 3) Flux ratios:

### Statistical significance: R at 10 kpc



In the case of pure "matter effects" we can disfavour flavour equalisation at  $\sim 2\sigma$  (only for W model)

# Statistical significance: R at 10 kpc



In the case of pure "matter effects" we can disfavour flavour equalization at  $>\sim 2\sigma$  (only for W model)