

Low background physics with HPGe detectors

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Anna Julia Zsigmond *for the GERDA and LEGEND groups*

MPP Project Review 2018

LEGEND and GERDA people

- Director: Allen Caldwell
- Group leaders: Iris Abt, Béla Majorovits
- Staff: Chris Gooch, Xiang Liu, Oliver Schulz
- Postdocs: Anna Zsigmond, Elena Sala (until Sept), Erdem Öz
- PhD students: Felix Fischer, Lukas Hauertmann, Connor Hayward, Raphael Kneissl, Martin Schuster, Laura Vanhoefer (finished)
- MSc students: Péter Kicsiny, Thomas Krätzschmar (finished), Oliver Plaul (finished), Barbara Schweisshelm (finished), Simon Eck

Special thanks to our colleagues in the workshops and in the administration!

Neutrinoless double beta decay

- Double beta $(2\nu\beta\beta)$ decay observed in various isotopes with a lifetime of $T^{2\nu} > 10^{19}$ - 10^{21} years
- If neutrino has Majorana nature \rightarrow neutrinoless double beta (0v $\beta\beta$) decay
- Discovery of 0vββ decay would
 - imply lepton number violation

Zsigmond

- tell us about the nature of the neutrino → Majorana component
- give information about the absolute neutrino mass through

in case of light Majorana neutrino exchange

Why Germanium detectors?

- Sensitivity on half-life $T_{1/2}^{0\nu} \propto \sqrt{M \cdot t}/BI \cdot \Delta E$
- High mass and efficiency
 → isotope enrichment
- Good energy resolution \rightarrow against intrinsic $2\nu\beta\beta$ decay
- Eliminate all backgrounds
 - Cosmic rays \rightarrow underground
 - Environmental radioactivity \rightarrow shielding and active veto
 - Radioactivity in setup material \rightarrow radio-pure material selection

- Source and detector the same
 → high efficiency
- Isotope enrichment up to 90% in ⁷⁶Ge is established
- HPGe has excellent energy resolution
- Intrinsically pure material
- High density material $\rightarrow \beta\beta$ point-like
 - \rightarrow backgrounds can be discriminated and rejected

The present: GERDA

GERDA data release 2018

- Unblinded Phase II exposure more than doubled \rightarrow **58.9 kg·yr**
- Achieved background index of ~6·10⁻⁴ cts/(keV·kg·yr) for both detector types with additional PSD algorithm for coaxial detectors
- Median sensitivity for $T_{1/2}$ limit setting \rightarrow **1.1**·**10²⁶ yr** (90% C.L.)
- Best fit is for no signal
- T_{1/2} > 0.9·10²⁶ yr
 (90% C.L.)
- Limit on effective Majorana mass
 < 104 - 228 meV

AJ. Zsigmond, Neutrino 2018

The future: LEGEND

Large Enriched Germanium Experiment for Neutrinoless $\beta\beta$ Decay

- Joint effort from Majorana and GERDA collaborations with new members for a ton-scale ⁷⁶Ge experiment
- m_{ββ} (eV) Two stages 200 kg in GERDA cryostat at LNGS Ο **GERDA 2018** 1000 kg with improved background index Ο 10^{-1} Limit setting sensitivity 10 1<u>0</u>-2 $L200 \rightarrow 1.6 \cdot 10^{27} \text{ yr} \rightarrow 28 - 61 \text{ meV}$ 0 $L1000 \rightarrow 1.6 \cdot 10^{28} \text{ yr} \rightarrow 9 - 19 \text{ meV}$ 0 NO 10⁻³ R&D ongoing to reach these sensitivities by reducing the 10^{-3} 10^{-2} 10^{-1} backgrounds $m_{light} (eV)$

Backgrounds and how to reject them

Cosmic rays

Natural radioactivity

Backgrounds and how to reject them

Cosmic rays

Natural radioactivity

MINIDEX: muon induced neutrons

 Shallow underground experiment at the University of Tübingen

- Identify muon induced neutrons with
 - \circ muon signal in scintillators
 - y from neutron capture in water with germanium detectors
- Run 2: both target walls lead
 Run 3: one target wall to copper
- All data reanalyzed: agreement with Geant4 simulation for neutrons from lead, slight discrepancy for copper
- Differences between Geant4 and Fluka in photo-disintegration are significant

Astropart. Phys. **102** (2018) 12

Ap. Ag > 1 t

AJ Zsigmond

R. Kneissl et al., to be submitted to Astropart. Phys.

Backgrounds and how to reject them

Cosmic rays

Natural radioactivity

GERDA Liquid Argon veto

low activity PMTs

wavelength shifting fibers with SiPM read-out

low activity PMTs

AJ Zsigmond

- Vetoing on the scintillation light from the LAr, an almost pure $2\nu\beta\beta$ spectrum remains
- Introduced dead time < 3%

AJ. Zsigmond, Neutrino 2018

Active construction material: PEN

- PEN scintillates around 440 nm \rightarrow directly accessible by PMTs and SiPMs, no need for wavelength shifter
- Mechanical properties have been studied → promising as holder or encapsulation for the HPGe detectors
- Radiopurity measurements are promising → other groups are working on synthesis in controlled environment to improve
- Consortium with
 - ORNL
 - Lancaster University
 - TU Dortmund
 - Czech Technical University in Prague
 - University of Tennessee
 - Nuvia a.s.

PEN scintillation

- PEN tiles excited by strong ¹³⁷Cs source in dark room
- Blue scintillation light visible on multi-exposure photograph

- PEN excited by UV light
- No need for wavelength shifter e.g. in LAr
- Could be used as HPGe detector encapsulation

PEN molding and aging

- Large amount of tiles studied with spectrometer to optimize parameters of injection molding
- Extended exposure to UV light shows decrease of light yield of 3.1% / day and no recovery observed

F. Fischer, MSc thesis

PEN scintillation at low temperatures

Gerdalinchen II test- stand revived to study PEN scintillation light in liquid nitrogen (later LAr)

¹³⁷Cs source outside the cryostat

 PEN cup

 PMT for cryogenic liquids

AJ Zsigmond

Backgrounds and how to reject them

Cosmic rays

Natural radioactivity

GERDA pulse shape discrimination

AJ Zsigmond

Eur.Phys.J. C 73 (2013) 2583 *JINST* 6 (2011) P03005

GERDA pulse shape discrimination

BEGe detectors

Coaxial detectors

 \rightarrow A/E parameter

- A = current amplitude
- E = energy
- Multi-site events have lower A/E than single-site events

 \rightarrow Neural Network (ANN)

- Input variables: times when the pulse reaches a given relative height (1% ... 99%)
- Trained on calibration data

Understanding A/E with simulations

- Pulse shape simulation studies showed that the slope of A/E as a function of energy is due to the increase of the charge cloud size with energy and diffusion
- Taking these effects into account we get good agreement with the data

B. Schweisshelm, MSc thesis

500

1000

2000

1500

3000 E_{tot} [keV]

GERDA pulse shape discrimination

AJ Zsigmond

Specific regions of the detector volume have to be rejected due to α surface contamination

- High A/E values are rejected in BEGe
- ANN rejects events around the bore-hole of coaxial detectors
- Cut on the charge collection time (10-90%)
 rejects fast surface events

GERDA pulse shape discrimination

• Both K lines and high energy α events strongly suppressed, while keeping high $0\nu\beta\beta$ signal efficiency

 $(71.2 \pm 4.3)\%$ for Coax and $(87.6 \pm 2.5)\%$ for BEGe detectors

• Lowest background level in the field achieved: 6×10⁻⁴ cts/(keV·kg·yr)

Deep Learning for PSD

- New method for SSE / MSE classification using two neural networks
- The autoencoder provides a representation of the signals with a small number of parameters without the need for labeled data

AJ Zsigmond

Deep Learning for PSD

 Classification based on the few parameters using labeled data

Al Zsigmond

Performance as good as A/E method

P. Holl, publication in progress

• But more robust without the need for time and energy dependent corrections

Backgrounds and how to reject them

Cosmic rays

Natural radioactivity

GALATEA

- Facility to scan detector surface directly with α and β sources
- New open ²⁴¹Am sources in both collimators

Nucl.Instrum.Meth. A **782** (2015) 56

Siegfried III

- 18-fold segmented, n-type detector with true coaxial geometry
- Study effects of passivation and metallization on the surface

GALATEA and Siegfried III

• With the new α sources the size of layers can be estimated based on the energy loss \approx 206 keV / μm (for E \approx 5.4 MeV)

K2 and Segmented BEGe

Electrically cooled cryostat → study temperature dependence

3-axes scanning stages

4-fold segmented n-type detector with small (BEGe-type) core contact \rightarrow study parts of the charge drift

Collimated 133Ba source \rightarrow low energy y events close to the surface

arXiv:1810.10332

K2 and Segmented BEGe

Temperature dependence

- Preliminary results confirm that the usually assumed power-law does not describe HPGe detectors at 80-120 K temperatures
- Different temperature dependence of drift times at different crystal axes

• Large amount of data taken to be analyzed next year

AJ Zsigmond

M. Schuster, *PhD thesis in progress*

Bulk properties: Compton scanner setup

Bulk properties: Compton scanner setup

• Correlation between HPGe and CZT detectors established

• Analysis ongoing ...

Backgrounds and how to reject them

Cosmic rays

Natural radioactivity

Pulse shape simulation: building blocks

- Electric field calculation
 - \circ 2D for ϕ symmetric detectors
 - 3D for segmented detectors
 - Multithreading
 - Adaptive grid
 - Fast enough for detector design optimization
 - Handling of undepleted regions
- Drift velocity model
 - Same as in other Germanium simulation models but easily extendable
- Charge carrier drift

7sigmond

- Clustering of energy depositions
- Handling of floating surfaces
- Mirror pulses in non-collecting segments
- Open source for easier development within the community

Detector geometry

- All detector geometries at MPP and in GERDA implemented
 - True coax with segmentation
 - BEGe / PPC
 - Segmented BEGe
 - $\circ \quad \text{Inverted coax} \quad$
- Parameters set in a human-readable json file
- Examples available within the package

Electric potential

- Solving Gauss' law with successive over-relaxation algorithm
- 2D for symmetric detectors or slower 3D for segmented detectors
- Adaptive grid: refine grid where the potential gradient is large
- Faster than other freely available software

Depletion for detector design

AJ Zsigmond

https://github.com/JuliaHEP/SolidStateDetectors.jl

Electric field

- Electric field calculated from the potential
- Charges drift approximately along the field lines

https://github.com/JuliaHEP/SolidStateDetectors.jl

Charge drift

- Drift velocity calculated from the electric field for both holes and electrons
- The model takes into account the effect of the crystal axes

https://github.com/JuliaHEP/SolidStateDetectors.jl

Signals

AJ Zsigmond

https://github.com/JuliaHEP/SolidStateDetectors.jl

PIRE GEMADARC

Germanium Materials and Detectors Advancement Research Consortium between institutes from USA, China and MPP

pire.gemadarc.org

2018 Summer school and collaboration meeting in China

pire.gemadarc.org/education/school18

5 lecturers and 4 students from MPP

2019 May: Summer school and collaboration meeting at MPP

indico.mpp.mpg.de/event/6013

Lectures and hands-on sessions on germanium detector properties and operation, undergraduate training program

Registration open!

Summary

- GERDA reached important milestones in the $0\nu\beta\beta$ search with
 - 6·10⁻⁴ cts/(keV·kg·yr) background index
 - \circ T_{1/2}>10²⁶ yr sensitivity for limit setting
 - o m_{ββ} < 104 228 meV
- LEGEND R&D is ongoing to further reduce backgrounds in 0vββ search with enriched Ge detectors
 - Active construction material PEN for veto
 - New pulse shape discrimination methods using machine learning
 - Alpha scan measurements to study surface effects
 - Measurement of the temperature dependence of drift velocities
 - New open source fast pulse shape simulation package in Julia
- Our group is making significant contributions to both experiments

GERDA LEGEND