Status and Prospects for the CRESST Experiment

Lucia Canonica Max-Planck-Institut für Physik

MPP Project Review Dec 16th, 2018

CRESST @ MPP

- Staff:
 - F. Petricca (PI)
 - D. Hauff
 - A. Bento (visiting)
- PostDoc:
 - L. Canonica
 - M. Mancuso
 - R. Strauss (up to 10.2018)

- Ph.D student:
 - A. Abdelhameed
 - P. Bauer
 - E. Bertoldo
 - N. Ferreiro*
 - J. Rothe
 - M. Wüstrich*

*thesis completed in 2018

The CRESST Collaboration

~45 Collaborators:

- 14 MPP, DE
- 4 Tubingen, DE

The CRESST experiment

Cryogenic Rare Event Search with Superconducting Thermometers

- Direct detection of Dark Matter particles via their scattering off target nuclei
 - Signal: low energy nuclear recoil
- Target: Scintillating CaWO₄ crystals
 - Composite detector CaWO4 + Light Detector
 - Efficient particle ID at low energy

Credit: MPP/T.Dettlaff

The CRESST experiment @ LNGS

Cryogenic Rare Event Search with Superconducting Thermometers

Laboratori Nazionali del Gran Sasso (Italy)

Experimental location: Average depth ~ 3600 m w.e. Muon flux ~ 2.6×10⁻⁸ µ/s/cm² Neutrons (<10 MeV): <10⁻⁶ n/s/cm²

The CRESST experiment @ MPP

Sensor production

The CRESST experiment @ MPP

Sensor production

Detector assembly

The CRESST experiment @ MPP

Sensor production

Detector Testing

Transition Edge Sensors

- Thin (200 nm) Tungsten film evaporated on the crystal.
- Transition temperature ~ [10 20] mK
- Key technology for detecting very small recoiling energies.
- **TES R&D** and fabrication at MPP.

CRESST III detector module

- Detector layout optimized for low-mass dark matter
- Fully scintillating housing
- Instrumented holders

Threshold design goal: 100 eV

CRESST-III detectors

10 detectors operating in Gran Sasso from July 2016 to February 2018

CRESST-III detectors

10 detectors operating in Gran Sasso from July 2016 to February 2018

Optimum thresholds

5 detectors reach/ exceed the CRESST-III design goal

Optimum thresholds

5 detectors reach/ exceed the CRESST-III design goal

NEW FRONTIER IN DIRECT DM DETECTION

Detector A

Data taking period: 10/2016 – 01/2018 Target crystal mass: 23.6 g Gross exposure (before cuts): 5.7 kg days Energy threshold: 30.1 eV

- Analysis chain includes selections on:
 - Rate: to select stable noise conditions
 - Stability: to select detector(s) in operating point
 - Data quality: Non-standard pulse shapes are discarded
 - *Coincidences*: rejected events in coincidence with iSticks, with other detectors and with muon veto

L. Canonica

MPP Project Review 2018

Neutron calibration data

Dark matter data

Energy spectra

• 445 events in the acceptance region

Energy spectra

Counts per 30eV

- 445 events in the acceptance region
- Unexpected rise of event rate <200 eV

Result

1D Yellin optimum interval method to compute the exclusion limit:

Energy spectrum of accepted events + Expected DM energy spectrum

Result

10⁶ Dark Matter Particle-Nucleon Cross Section (pb) ESST-above ground 201 10⁵ 10 -³² (-³³ Section (-³⁴ S 10⁴ One order of magnitude 10³ 1D Yellin optimum 10² improvement at 0.5 GeV/c² interval method to -35 SS 10⁻³⁶ O 10 compute the exclusion limit: 10⁻³⁷ Particle-Nucleon 10⁻¹ 10⁻² -38 10^{-1} 10⁻³ Energy spectrum of 10 \bigcirc \bigcirc 10^{-4} 10 accepted events 10⁻⁵ 10 10⁻⁶ 10 Dark Matter **Expected DM energy** 10⁻⁷ 10^{-1} spectrum 10⁻⁸ 10 10⁻⁹ 10 10^{-46} **10**⁻¹⁰ Coherent Neutrino Scattering on CaWO 10^{-11} 20 567810 0.2 0.3 2 3 0.1 4 World leading limit at Dark Matter Particle Mass (GeV/c²) low-mass <1.7 GeV/c² **Background limited**

L. Canonica

18

Result

1D Yellin optimum interval method to compute the exclusion limit:

Energy spectrum of accepted events + Expected DM energy spectrum

Lowest limit >0.16 GeV/c²

→ Performance "limited"

L. Canonica

MPP Project Review 2018

Current status

April-May 2018:

L. Canonica

"Upgraded" detector modules have been prepared at MPP (crucial contribution from MPP Mechanical Workshop) and installed in Gran Sasso.

Dedicated hardware changes to understand source of excess events (different crystal absorbers, different detector holders, etc..)

First data from Gran Sasso in these days.

What's next? (2)

Long term: Major upgrade of the experiment is foreseen to start next year.

Goals: increase the number of channels in the LNGS setup to 100 and further improve threshold and background.

of wiring and read out electronics Detectors R&D:	
Further threshold reduction Improved reproducibility	
Increased production rate	obć
Reduced background Different materials	Pro

2019

L. Canonica

2021

2020

Sensor optimisation

Sensor optimisation

Sensor reproducibility

Sensor optimisation

Sensor reproducibility

New materials

Sensor optimisation

Sensor reproducibility

New materials

SQUID

Sensor optimisation

Sensor reproducibility

New materials

SQUID

CRESST "Spin-offs"

Spin-offs of the CRESST-MPP technology successfully funded in 2018 → from R&D to experiments

MPRG @ MPP, K. Shaeffner CRESST-like cryogenic detectors made of Nal to study the DAMA signal.

ERC Starting Grant 2018, 804228, R. Strauss Miniaturized CRESST-like detectors for studying CNNS at reactors.

Conclusions

- Cryogenic calorimeters represent a well established technology for the investigation of dark matter and other rare event searches.
- CRESST has reached an unprecedented low nuclear recoil threshold of 30 eV and is leading sensitivity for light DM searches at 160 MeV/c².
- **CRESST MPP** is the leading institution in the experiment, developing highly sensitive cryogenic particle detectors.
- A new explorative run is ongoing at LNGS to investigate the source of excess events.
- Preparation for the major upgrade of the LNGS experiment.