Project Review 2018: String Theory group

. Jp·Ag≥±t

Eran Palti MPI

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

MPI, Dec 2018

MAX-PLANCK-GESELLSCHAFT

String Theory Group

Dieter Lüst

Stephan Stieberger

Ralph Blumenhagen

Eran Palti

Dimitris Skliros Vladislav Kupriyanov

Artem Averin David Osten Henk Bart **Florian Wolf Daniel Klaewer** Ismail Achmed-Zade Sebastian Rebolledo Philip Betzler

Marc Syvaeri Matthias Traube Lorenz Schlechter **Daniel Panea** Pouria Mazloumi **Riko Schadow Benjamin Schulz** Max Brinkmann

Non-Geometric and Massive Supergravities

(Dieter Lüst, Felix Rudolph)

Super-gravities in 4-dimensions known for N = 1,2,3,4,5,6,8

Spin-four $\mathcal{N} = 7$ W-Supergravity: S-fold and Double Copy Construction

Sergio Ferrara^{*a,b,c*}, Dieter Lüst^{*a,d,e*}

Graviton is massive! Supersymmetry + massive and bi-metric gravity:

BIMETRIC, CONFORMAL SUPERGRAVITY AND ITS SUPERSTRING EMBEDDING

Sergio Ferrara^{a,b,c}, Alex Kehagias^d, Dieter Lüst^{e,f}

ASPECTS OF WEYL SUPERGRAVITY

Sergio Ferrara^{*a,b,c*}, Alex Kehagias^{*d*}, Dieter Lüst^{*a,e,f*}

A Unique Connection for Born Geometry

Non-geometric metric structures:

Laurent Freidel^{*1}, Felix J. Rudolph^{†2}, David Svoboda^{*3}

L_{∞} - Algebras and Gauge Theories

(Ralph Blumenhagen, Dieter Lüst, Vladislav Kupriyanov) Max Brinkmann, Matthias Traube

Gauge theories are based on Lie algebras $A_{\mu} = A^{i}_{\mu}t_{i}$

$$\left[t_i, t_j\right] = f_{ij}^k t_k$$

String Field Theories have a more general structure of L_{∞} -Algebras

$$\begin{bmatrix} t_i, t_j, \dots, t_s \end{bmatrix} \qquad \begin{bmatrix} [t_i, t_j], t_k \end{bmatrix} + \begin{bmatrix} [t_k, t_i], t_j \end{bmatrix} + \begin{bmatrix} [t_j, t_k], t_i \end{bmatrix} \neq 0$$

On the Existence of an L_{∞} structure for Classical Super \mathcal{W} -algebras

Bootstrapping Non-commutative Gauge Theories from L_{∞} algebras

On the Uniqueness of L_{∞} bootstrap: Quasi-isomorphisms are Seiberg-Witten Maps

Ralph Blumenhagen and Max Brinkmann¹

Ralph Blumenhagen¹, Ilka Brunner², Vladislav Kupriyanov^{1,3,4}, Dieter Lüst^{1,2}

Ralph Blumenhagen¹, Max Brinkmann¹, Vladislav Kupriyanov^{1,2,3}, Matthias Traube¹

Strings on Celestial Sphere

(Stephan Stieberger)

New way to write particle scattering amplitudes in Minkowski space in terms of correlators on the celestial sphere

Application of the techniques to String Theory scattering amplitudes

Strings on Celestial Sphere

Symmetries of Celestial Amplitudes

Stephan Stieberger^{a,b} , Tomasz R. Taylor^{c,d}

Stephan Stieberger^a , Tomasz R. Taylor^b

Machine Learning Geometry

Daniel Klaewer, Lorenz Schlechter

Machine Learning Line Bundle Cohomologies of Hypersurfaces in Toric Varieties

Daniel Klaewer, Lorenz Schlechter Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805, München, Germany

Supervised learning by computer to compute difficult algebraic geometric quantities, relevant for particle physics model building in string theory

Lara B. Anderson¹, James Gray², Andre Lukas³, Eran Palti⁴

String Theory Swampland (Dieter Lüst, Ralph Blumenhagen, Eran Palti) Daniel Klaewer, Lorenz Schlechter, Florian Wolf

The String Theory Swampland has been a hot topic this year

De Sitter Space and the Swampland

Georges Obied (Harvard U., Phys. Dept.), Hirosi Ooguri (Caltech & Tokyo U., IPMU), Lev Spodyneiko (Caltech), Cumrun Vafa (Harvard U., Phys. Dept.). Jun 21, 2018. 21 pp. CALT-TH-2018-020, IPMU18-0100 e-Print: arXiv:1806.08362 [hep-th] | PDF References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote

ADS Abstract Service

Detailed record - Cited by 113 records 100+

C Quanta magazine Physics Mathematics Biology Computer Science All Articles

Dark Energy May Be Incompatible With String Theory

A controversial new paper argues that universes with dark energy profiles like ours do not exist in the "landscape" of universes allowed by string theory.

Distance and de Sitter Conjectures on the Swampland

Hirosi Ooguri,^{1,2} Eran Palti,³ Gary Shiu,⁴ and Cumrun Vafa⁵

The refined de Sitter conjecture*

$$\left| \underline{\nabla} V(\phi) \right| > c V(\phi) \quad \text{or}$$

$$V(\phi) \qquad \qquad \checkmark$$

 $\min(\nabla_i \nabla_j V) \le -\frac{c'}{M_p^2} V$

Cosmological Constant

Dynamical Dark Energy (quintessence)

*Arguments apply at weak coupling

Distance and de Sitter Conjectures on the Swampland

Hirosi Ooguri,^{1,2} Eran Palti,³ Gary Shiu,⁴ and Cumrun Vafa⁵

Distance conjecture states that when a scalar field changes its expectation value by more than the Planck mass, an infinite tower of states becomes exponentially light

$$\Lambda \sim M_p e^{-\frac{\Delta \phi}{M_p}}$$

The Refined Swampland Distance Conjecture in Calabi-Yau Moduli Spaces

Ralph Blumenhagen¹, Daniel Klaewer¹, Lorenz Schlechter^{2,1}, Florian Wolf¹

Infinite Distances in Field Space and Massless Towers of States

Thomas W. Grimm¹, Eran Palti², Irene Valenzuela¹

Infinite Distance Networks in Field Space and Charge Orbits

Thomas W. Grimm¹, Chongchuo Li¹, Eran Palti²

Most recently proposed a new Swampland Constraint

A Spin-2 Conjecture on the Swampland

Daniel Klaewer,¹ Dieter Lüst,^{2,1} and Eran Palti¹ ¹Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805, München, Germany ²Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität, 80333 München, Germany

A massive Spin-2 field, with mass m, and interaction scale M_w , coupled to gravity implies an infinite tower of states at the scale

$$\Lambda \sim \frac{m M_p}{M_w}$$

Captures behaviour in string theory of Kaluza-Klein/Oscillator modes

Summary of 2018

String theory is central to theoretical physics, and is constantly expanding its reach

Thank You