

EDET Hybrid Measurement Results

10th April 2018

Eduard Prinker, 22nd International Workshop on DEPFET Detectors & Applications

OVERVIEW

- t FROM HYBRID5 to EDET-HYBRID
 - PHILOSOPHY
 - CHANGES
 - COMPLETED COMPONENTS
- t MAPPING ISSUES
- t STANDARD MEASUREMENTS
- t CALIBRATION ISSUES

t

t

Motivation for new E1 Hybrid Board

Space Constraints

EDET small matrix (*active area: 12x7mm*²) larger than BELLE small matrix (*7.68x3.84mm*²) permitting connections to all DCDE and Switcher channels à new wirebond adapter

Integrate new connections

- compatibility to BELLE PS & PSP à Glenair connectors
- Switcher substrate line, Switcher V_{ref} line
- enabling sense lines to all ASIC voltages
- t Decision on data interface
 - Change 2nd infiniband (JTAG lines) connector to RJ45 in order to get rid of JTAG breakout board

Philosophy

Starting with the functional BELLE II chain all components are stepwise replaced and tested

CHANGE (I) – DCDE

Starting with the functional BELLE II chain all components are stepwise replaced and tested

CHANGE (II) – EDET MATRIX

Starting with the functional BELLE II chain all components are stepwise replaced and tested

CHANGE (III) – EDET HYBRID BOARD

Starting with the functional BELLE II chain all components are stepwise replaced and tested

CHANGE (IV) – PSP

Starting with the functional BELLE II chain all components are stepwise replaced and tested

PSP Breakout-Board – Final Board

Wire-Bonding then (BELLE II) ...

10th April 2018

11

MAPPING APPROACH (1)

 wire-bonding starts with closest pad rows, i.e. 1->1, 2->2, 3->3, 4->4

N / A		INIC	10	CLI	IFC
IVIA	PP	INC	ı IS	SU	IES

				20	000			
			DCD WB				angement	latrix Arra
	16		0					
10	80	33	64		252	254	253	255
48	17	32	1		248	250	249	251
112	91	70	45		244	246	245	247
112	10	07	00		240	242	241	243
113	18	97	2		236	238	237	239
114	52	34	00		232	234	233	235
114	19	98	3		202	230	200	231
51	83	35	6/		224	200	225	227
115	20	99	4		220	220	220	222
52	84	36	68		220	222	221	223
116	21	100	5		210	210	217	217
53	85	37	69		212	214	213	215
117	22	101	6		200	210	209	211
54	86	38	70		204	200	205	207
118	13	102	15		200	202	201	203
9	8	11	7		196	198	197	199
12	31	10	14		192	194	193	195
27	23	29	25		188	190	189	191
26	30	24	28		184	186	185	187
45	41	47	43		180	182	181	183
40	44	39	42		176	178	177	179
63	59	46	51		172	174	173	175
55	58	57	56		168	170	169	171
62	77	60	79		164	166	165	167
73	72	75	71		160	162	161	163
76	95	74	78		156	158	157	159
91	87	93	89		152	154	153	155
90	94	88	92		148	150	149	151
109	105	111	107		144	146	145	147
104	108	103	106		140	142	141	143
127	123	110	125		136	138	137	139
119	122	121	120		132	134	133	135
126	141	124	143		128	130	129	131
137	136	139	135		124	126	125	127
140	159	138	142		120	122	121	123
155	151	157	153		116	118	117	119
154	158	152	156		112	114	113	115
173	169	175	171		108	110	109	111
168	172	167	170		104	106	105	107
191	187	174	189		100	102	101	103
183	186	185	184		96	98	97	99
190	205	188	207		92	94	93	95
201	200	203	199		88	90	89	91
204	223	202	206		84	86	85	87
219	215	221	217		80	82	81	83
218	222	216	220		76	78	77	79
237	233	239	235		72	74	73	75
232	236	231	234		68	70	69	71
255	251	238	253		64	66	65	67
247	250	249	248		60	62	61	63
254	150	250	134		56	58	57	59
192	214	166	109		52	54	53	55
246	140	220	122		48	50	49	51
240	212	145	103		-10	30	49	47
181	213	105	197		44	40	45	4/
245	148	229	132		40	42	41	43
180	212	164	196		36	38	37	39
244	147	228	131		32	34	33	35
179	211	163	195		28	30	29	31
243	146	227	130		24	26	25	27
178	210	162	194		20	22	21	23
242	145	226	129		16	18	17	19
177	209	161	193		12	14	13	15
241	144	225	128		8	10	9	11
176	208	160	192		4	6	5	7

MAPPING APPROACH (2)

enter correct pad connections from the layout in an excel sheet electrical row consists of 4 geometrical rows the pad arrangement for the EDET-Small-Matrix does not fully correspond to the geometrical numbering: 3,2,1,0 à 3,1,2,0 sort by DCD channel index & reversely by matrix index and copy corresponding matrix to python program mapping.py

DHPHybrid5Mapping =np.asarray([

```
0,16,224,240,192,208,160,176,128,144,225,241,193,209,161,177,
129,145,226,242,194,210,162,178,130,146,227,243,195,211,163,179,
131, 147, 228, 244, 196, 212, 164, 180, 132, 148, 229, 245, 197, 213, 165, 181,
133,149,230,246,198,214,166,182,134,150,252,254,248,250,249,247,
253, 251, 238, 255, 234, 236, 231, 232, 235, 233, 239, 237, 220, 222, 216, 218,
217,215,221,219,206,223,202,204,199,200,203,201,207,205,188,190,
184, 186, 185, 183, 189, 187, 174, 191, 170, 172, 167, 168, 171, 169, 175, 173,
156,158,152,154,153,151,157,155,142,159,138,140,135,136,139,137,
143,141,124,126,120,122,121,119,125,123,110,127,106,108,103,104,
107,105,111,109,92,94,88,90,89,87,93,91,78,95,74,76,
71,72,75,73,79,77,60,62,56,58,57,55,51,59,46,63,
42,44,39,40,43,41,47,45,28,30,24,26,25,23,29,27,
14,31,10,12,7,8,11,9,15,13,102,118,70,86,38,54,
6,22,101,117,69,85,37,53,5,21,100,116,68,84,36,52,
4,20,99,115,67,83,35,51,3,19,98,114,66,82,34,50,
2,18,97,113,65,81,33,49,1,17,96,112,64,80,32,48
], dtype=np.uint8)
```


MAPPING – FUNCTIONAL TEST

10th April 2018

Eduard Prinker, 22nd International Workshop on DEPFET Detectors & Applications

Laser Spot x-direction

MPG

DCDE-Manual DAC-Registers

Bit No	Name	Purpose	Description
[250:253]	q(26:29)	En30 (TIA gain BELLE 26/15) (EDET: 60/15), En60 (TIA gain BELLE 13/15) (EDET: 3/15), En90 (TIA gain BELLE 19/15) (EDET: 1.5/15), En120 (BELLE not used) (EDET 15/30) (ADC range is $32 \mu A$)	gain control (Fig. 1.4)
[254:257]	q(30:33)	EnCap(0:3); EnCap(1) Stability cap	Bandwidth control (Fig. 1.4)
[258:261]	q(34:37)	(34): Belle: MU; EDET: 0 - boost Subln 1 - normal Subla (35): NU, (36): CMC cap (if ACMC is used set to one), (37): ConnAmpLow (if ACMC is used set to zero)	Fig. 1.4
[262]	q(38)	EnDoubleSamplingB	Zero enables double sampling mode (Fig. 1.3)
[263]	q(39)	EnDoubleSampling	One enables double sampling mode (Fig. 1.3)

Table 3.3: Global shift register

DCDE Gain Variation

En30	En60	En90	En120	Gain	limes lowest Gain
1	1	1	1	0.061	1.0
0	1	1	1	0.063	1.0
1	1	1	0	0.065	1.1
0	1	1	0	0.067	1.1
1	0	1	1	0.087	1.4
0	0	1	1	0.091	1.5
1	0	1	0	0.095	1.6
0	0	1	0	0.100	1.7
1	1	0	1	0.154	2.5
0	1	0	1	0.167	2.8
1	1	0	0	0.182	3.0
0	1	0	0	0.200	3.3
1	0	0	1	0.667	11.0
0	0	0	1	1.000	16.5
1	0	0	0	2	33

 $R_{f}: En30 = 30k$ En60 = 3k En90 = 1.5k En120 = 15k $R_{s} = 15k$ $Gain = \frac{R_{f}}{R_{s}}$

Gain	dynamic range for 200 ADU [µA]
1	380
1.5	250
3	137
11	41
33	15

Resistor	EDET	BELLE
En30	30k	19k
En60	3k	15k
En90	1.5k	26k
En120	15k	not used

BELLE (top) vs EDET (bottom) PS – low gain

DHE current source limited to 75µA à solution: compound curves with IPDAC

channel002_gain-001_dacipsource-075_dacipsource2-075_dacipsource_middle-070_dcd-amplow-0575_dcd-refin-0750_dacifbpbias-075_dacvnsubin-020

BELLE (top) vs EDET (bottom) PS – high gain

channel002_gain-015_dacipsource-075_dacipsource2-075_dacipsource_middle-070_dcd-amplow-0575_dcd-refin-0750_dacifbpbias-075_dacvnsubin-020

Current DAC from IPDAC + DHE source [μ A]

MPG

Matrix based Transfer Curves – high gain

channel033_dacipdac-000_gain-015

channel079_dacipdac-000_gain-015___INLpp_middle_9.51

DELAY SCAN – E1-I-04

CALIBRATION BRAINSTORMING

METHOD	DESCRIPTION	PROS	CONS
X-ray Source (low energy)	Cd ¹⁰⁹ 22keV	 acceptable interaction probability equipment HLL available 	 generates only about 6000 e⁻ geometry allows for only 1-2 events per readout
X-ray Source (high energy)	beyond 140keV (corresponds to 10ADUs)	no vacuum apparatus necessary	 very low photoabsorption probability of 0.01% Compton effect dominates availability of Source
b ⁻ emitter	Sr ⁹⁰ continuous spectrum	generates over 100,000 e/h pairs (I. Dourki)	 around 300 keV electrons would leave the detector, so escape energy has to be measured (scintillator)
a emitter	Am ²⁴¹ 5.486MeV (encapsulated as 60keV g-source usable)	 forces internal gate capacity to maximum level (1,000,000 e⁻) 	 vacuum device and corresponding interconnection hardware necessary detector radiation damages radiation protection N
SEM/TEM	0	 gradual increase of both intensity (in 10eV steps up to 300keV) and quantity of e⁻ 	 vacuum device and corresponding interconnection hardware necessary
Laser	660nm	 easy focusing intensity controllable via applied voltage and time (pulsing) equipment HLL available 	 exact energy transfer unknown (approximation with optical power meter) only cell-by-cell calibration
CLEAR Backinjection	capitalizes on variation of integration time	• relatively quick calibration of all pixels possible	 level of original backinjection not known (but can be measured indirectly – laser) finding optimal operation point for all pixels (process variation)

10th April 2018

Eduard Prinker, 22nd International Workshop on DEPFET Detectors & Applications

23

Source: NIST data

MPG

SOLUTION

- Calibrate laser pulse with Cd¹⁰⁹ source in high gain mode (from BELLE experience about 20 ADU, which corresponds to 1-2 ADU in lowest gain mode)
- t Step-increase of pulse count within one readout period in order to measure a discrete gain curve

Expected Cd109-Peak – Calculations

 $g_q^{smat} \sim \frac{1}{4.4^{1.5} \times 28.6^{0.5}} = 0.020$ $g_q^{spix} \sim \frac{1}{5.4^{1.5} \times 21.6^{0.5}} = 0,0171$ $g_q^{belle} \sim \frac{1}{3.6^{1.5} \times 13.4^{0.5}} = 0.044$

$$g_q \sim \frac{1}{W^{1/2}L^{3/2}} \sqrt{I_{drain}}$$

	parameter	value	unit
	L(small matrix gate)	4.4*	μm
* For wet etching	L(small pixel gate)	5.4*	μm
normally a value of 1.4µm has to	W(small matrix gate)	28.6*	μm
be deducted (in case of L) or	W(small pixel gate)	21.6*	μm
added (in case of W) respectively	DCD-E dynamic range (high gain)	20	μA
from the design value; here it was	à 1 ADU	78.4	nA
plasma-etched à only 0.6µm	Cd109 – 22 keV	»6000	e⁻
	small pixel measured g _q	200	pA/e⁻
	6000 x 200pA à 1.2µA	15.3	ADU
	I ^{smat} , I ^{spix} drain	74, 100(140)	mA
	à rescaled by $\sqrt{I_{drain}}$ and g_q	15.3 (13.0)	ADU

10th April 2018

MPG

Calculated hits with Cd-Source

Photons (per 100 disint.)	energy keV	Photon Emissions		Cd ¹⁰⁹	Source
1 10.37	3.191	XL	$(1 - \cos[-(\alpha/\alpha)\alpha])$	5.04.2015	Reference Date
6 29.21	21.9906	XK _{α2}	$f_0 = exp[-(\mu/\rho)x]$	6.04.2018	Measurement Date
7 55.1	22.16317	XKai		1087.00	elapsed time t (d)
0 15.25	25.00	XK _{83,1,5}		462.00	halflife T _{1/2} (d)
8 2.65	25.48	XK _{B2,4}		0.001500	decay constant λ
6 3.66	88.0336	γ		7.40E+08	Activity Ref.Date
116.235				4.85E+07	Emission Rate (s ⁻¹ ster ⁻¹)
		Χρ	Sensor Thickness	1.45E+08	Activity Meas.Date
		x	= mass thickness	50	Sensor-Thickness (µm)
				2.329	Si density (g/cm ³)
B / M.M. Bé, E. Schönfeld 2	LNE-LNHB, PTB	Photon Emissions:		1.848	Be density (g/cm ³)
ocs.gsi.de/~stoe exp/web	http://web-do	Photoabsorption:		10.49	AI density (g/cm3)
rdat	http://nuclear				
	in mm	source geometry		4.096	Frame Time (µs)
• Ø8 ma	1.5	capsule thickness		back	Detector side
	5.89	collimator length		100000	#Frames
Line way	5	distance PCB			
5	1.6	PCB thickness		9,601	exp. Entries (with XL)
S - A	0.1	glue		9,578	exp. Entries (without XL)
\$3	0.4	matrix cavity		0.10	entries per event
Ø4.5	14.49	total distance			
_	4.3	opening collimator			detailed
	2638.44	area sphere		0	XL
	212.71	area beam		2,877	XK _{α2}
small EDET Matrix with 12	12.10	area matrix		5,356	XKα1
always place the source o	218.12	ratio sphere/matrix		1,154	XK _{β3,1,5}
				190	ХК _{82.4}
				23	γ
ors asi de/~stoe exn/web	http://web-do	Calculator:			

10th April 2018

33

Cd-Source Measurement (1)

Offsets, Masked Pixels and Clusters for Cd109-Source Measurements

Cd-Source Measurement (2)

CONCLUSION: channel-length of 5µA should be chosen

10th April 2018

Eduard Prinker, 22nd International Workshop on DEPFET Detectors & Applications

NEXT STEPS

t Optimize Settings for Source Measurements

t Calibration of low gain/signal compression with Laser Pulse

t Integration of PSP

THANK YOU FOR YOUR ATTENTION

10th April 2018

Eduard Prinker, 22nd International Workshop on DEPFET Detectors & Applications

37

PSP Breakout-Board – electronic schematics

circuit diagram/layout documents the electrical wiring of different components
 define footprints and functionalities in component library

10th April 2018

Eduard Prinker, 22nd International Workshop on DEPFET Detectors & Applications

PSP Breakout-Board - Design

DCDE Noise

Gain	range 200 ADU [µA]	Current/ADU [µA]	DCDE noise [ADU]	DCDE noise [µA]
1	380	1.9	0.92*	1.75
1.5	250	1.25	0.69	0.86
3	137	0.69	0.69	0.48
11	41	0.2	0.96	0.19
33	15	0.08	1.50	0.12

*Maybe too high because of discrete IPDAC transition

1 primary electron generates
$pprox$ 8000 e^- (300 keV)
$pprox$ 24,000 $e^-(100~keV)$
in 50µm thick silicon detector
EDET detector response for
1^{st} primary electron = 300 pA
$100^{th} electron = 60 pA$
à Incremental Signal for
1stprimary electron = 2.4 μA
100 th electron = 0.48 μA

DCDE noise mainly induced by quantization error (0.5 ADU) Not relevant because of statistical deviations for spatiotemporal signal generation $\Delta primary e^- = \sqrt{primary e^-}$

100	100	100	100
100	110	100	100
100	110	90	100
100	90	100	100

SAMPLING POINT SCAN – E1-I-04

Bit shifts - E1_I_04 - asicpair: 1

Rows