Challenging the Swampland Distance Conjecture

Lorenz Schlechter

12.03.2018

The Landscape and the Swampland

The Landscape and the Swampland

The Landscape and the Swampland

The Landscape and the Swampland

The Landscape and the Swampland

The Landscape and the Swampland

The Moduli Space

- The swampland conjecture is a statement about effective theories in the landscape.
- Assume type II string theory, then the phenomenological most attractive models are 3d Calabi Yau compactifications.
- The $4 d$ effective theory is a $\mathcal{N}=2$ supergravity theory.
- Deformations of the internal space(= moduli) appear as scalar fields in the effective theory.

The Moduli Space

- There are two different types of deformations, Kähler deformations and complex structure deformations
- Mirror symmetry relates the Kähler deformation of one Calabi Yau to the complex structure sector of its mirror
\rightarrow only need to calculate one of the two!
Example: Torus

$$
\begin{equation*}
\tau=\frac{R_{1}}{R_{2}} \quad t=R_{1} R_{2} \tag{1}
\end{equation*}
$$

In this case, Mirror symmetry is $R_{2} \rightarrow \frac{1}{R_{2}}, \tau \leftrightarrow t$

The Swampland Distance Conjecture

The original conjecture

If two points P and P_{0} are infinitely far away in the moduli space, there is an infinite tower of exponentially light states.

The refined conjecture

If two points P and P_{0} are more than $M_{P I}$ away in the moduli space, there is an infinite tower of states which mass can be described by $M_{P} \sim M_{P_{0}} \cdot e^{-\lambda \frac{\Theta\left(P, P_{0}\right)}{M_{P I}}}$.

The Swampland Distance Conjecture

The Proper Distance

The proper distance Θ between two points in the moduli space is the length of the shortest geodesic $\gamma(\tau)$ connecting the two points.

$$
\begin{equation*}
\Theta=\int_{\gamma} d \tau \sqrt{G_{i j} \frac{\partial \Phi_{i}}{\partial \tau} \frac{\partial \Phi_{j}}{\partial \tau}} \tag{2}
\end{equation*}
$$

Behavior of the proper Distance

$$
\begin{gather*}
M_{P} \sim M_{P_{0}} \cdot e^{-\lambda \Theta} \rightarrow \Theta \sim \frac{1}{\lambda} \log \left[\frac{M_{P_{0}}}{M_{P}}\right] \tag{3}\\
M_{K K} \sim \frac{1}{r} \rightarrow \Theta \sim \frac{1}{\lambda} \log \left[\frac{r}{r_{0}}\right] \tag{4}
\end{gather*}
$$

Torus with fixed complex structure \rightarrow only 1 Kähler modulus t.

$$
\begin{gather*}
G_{t t}=\frac{3}{4 t^{2}} \tag{5}\\
\Theta=\int_{t_{0}}^{t} d t \sqrt{\frac{3}{4}} \frac{1}{t}=\frac{1}{\lambda} \log \left(\frac{t}{t_{0}}\right) \quad, \lambda=\frac{2}{\sqrt{3}} \tag{6}
\end{gather*}
$$

The Proper Distance

Figure: Expected relation between proper field distance Θ and $\operatorname{Im} t$.

The Programm

Goal: Check the conjecture $\left(\Theta_{c}=\Theta_{0}+\Theta_{\lambda}=\mathcal{O}\left(M_{P I}\right)\right)$ in explicit examples.

TODO:

- Calculate the metric on the moduli space.
- Find the shortest geodesic between two points.
- Calculate the proper distances.
- Check at which distance the logarithmic behavior appears.

The Kähler Potential

$$
\begin{equation*}
G_{i j}=\partial_{i} \partial_{j} K(\Phi) \tag{7}
\end{equation*}
$$

The Kählerpotential K of the effective SUGRA theory can be calculated via different methods:

- Periods of the Calabi Yau
- Gauged Linear Sigma Models

Both methods work and have different advantages and disadvantages \rightarrow use both and crosscheck.

Metric of the Quintic

Figure: The metric on the moduli space of the mirror quintic.

The Programm

TODO:

- Calculate the metric on the moduli space. \checkmark
- Find the shortest geodesic between two points.
- Calculate the proper distances.
- Check at which distance the logarithmic behavior appears.

Geodesics for the Quintic

Figure: Geodesics for the initial data $(r, \dot{r}, \theta, \dot{\theta})=(0,1, i \cdot \pi / 50,0)$, for $i=1, \ldots, 10$. The orange geodesics are the \mathbb{Z}_{2} images.

The Programm

TODO:

- Calculate the metric on the moduli space. \checkmark
- Find the shortest geodesic between two points.
- Calculate the proper distances. \checkmark
- Check at which distance the logarithmic behavior appears.

The logarithmic Behaviour

Asymptotic form of the proper distance Θ at the LCS point known.

$$
\begin{equation*}
\Theta=\alpha \log (t)+\frac{\beta}{t^{3}}+\mathcal{O}\left(\frac{1}{t^{6}}\right) \tag{8}
\end{equation*}
$$

\rightarrow Fit to determine α and β.
\rightarrow Result: The logarithm is always the dominating term and the corrections are small in the LCS phase
\rightarrow Define Θ_{0} at the phase boundary.

Results

- The Conjecture holds in all models.
- $\Theta_{0}+\Theta_{\lambda}=\mathcal{O}\left(M_{p l}\right)$.
- $\Theta_{0}<0.5$
- Θ_{0} per phase decreases with the number of moduli.

Outlook

- Periods are known for a large number of CY in all phases.
- Add fluxes to stabilize moduli
- Search for Swampland inside the flux Vacua Landscape

The End

Model Setup

- 1-parameter models
$\mathbb{P}_{11111}^{4}[5], \mathbb{P}_{11112}^{4}[6], \mathbb{P}_{11114}^{4}[8], \mathbb{P}_{11125}^{4}[10]$
$\mathbb{P}_{111111}^{5}[33], \mathbb{P}_{1111111}^{7}\left[\begin{array}{lll}2 & 2 & 2\end{array}\right]$
- 2-parameter models \mathbb{P}_{11222}^{4} [8], \mathbb{P}_{11226}^{4} [12], $\mathbb{P}_{11169}^{4}[18]$
- 101-parameter models

Mirror-Quintik

The Geodesic Equation

$$
\begin{equation*}
\frac{d^{2} x^{\mu}}{d \tau^{2}}+\Gamma_{\alpha \beta}^{\mu} \frac{d x^{\alpha}}{d \tau} \frac{d x^{\beta}}{d \tau}=0 \tag{9}
\end{equation*}
$$

- Can be solved numerically for given initial conditions.
- Problem: A priori one does not know where one will end up.
\rightarrow Calculate a 'fan' of geodesics

