Influence of string decays on
axion mass prediction




Axion dark matter and its mass

® What is the “typical mass” of the axion dark matter?

® For the post-inflationary scenario (with Now = 1),
there should be one-to-one correspondence between its
mass and abundance.
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Axion production from topological defects

Davis (1986); Harari and Sikivie (1987); Davis and Shellard (1989); Hagmann and Sikivie (1991);
Battye and Shellard (1994);Yamaguchi, Kawasaki, and Yokoyama (1999); Hagmann, Chang, and Sikivie (2001)

® Axions are copiously produced from topological defects until their
collapse, which happens around the time of the QCD phase transition.

® The relic axion density is given by

R (tdecay ) %

Pa (ttoday) = MyNg (tdecay) R(ttoday) R(t) : scale factor

h n (t ) e pa(tdecay) " pdefects(tdecay)
where a c;ecay <Ea(tdecay)> <Ea(tdecay)>

Time at the de



Field theoretic lattice simulations

Hiramatsu, Kawasaki, KS, and Sekiguchi (2012); Kawasaki, KS, and Sekiguchi (2015)
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® Spectrum of radiated axions is estimated by solving classical EOM for complex scalar field.

® There are O(l) strings per horizon volume, and radiated axions are mildly relativistic:

£=10+05

(Ea)

Maq

(taecay) = 3.23 & 0.18

® Estimate of the axion DM mass
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Technical limitations of lattice simulations

® VWe must consider two extremely different length scales.

® Width of string core

=
0 o Upg = const.

e Hubble radius H ' ~ ¢ -1

® |n order to follow the time evolution correctly, we must maintain

05 > lattice spacing ox R




Global nature of strings

® String tension acquires a large logarithmic correction
due to the gradient energy:

energy T oo > |10®]°
= — e dp | |— -
length 0 or r O

2
e n il 27‘("()}2)an P




Need of alternative methods

® |arge radius to core width ratio (and hence high
string tension) cannot be realized in the
conventional approach.

® The way out:
Modifying the simulation setup such that it

effectively induces high string tension.




Simulations with “smeared” strings (2D)

Fleury and Moore, JCAP05(2016)005 [arXiv:1602.04818]

® |Implementing axion field on 2D lattice,

while implementing string cores as
additional explicit objects.

“smeared ball” with radius 7

® String self-energy at scale 7 < 1 String Density Rises with M
is renormalized to its mass:

= 771;}2)@ In(rg/ds)

® Significantly different behavior
at large In(H ' /d,):
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® String density increases.

® Results peculiar to 2D ?
E String mass M = mk
(3D version has not been done yet.) -
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Simulations with auxiliary fields

Klaer and Moore, JCAPI10(2017)043 [arXiv:1707.05566]
Klaer and Moore, JCAPI1 1(2017)049 [arXiv:1708.07521]

Introduce two complex scalars and one U(1) gauge field:

1 : ;
—L = 7 P 410, — ig1eAu) 1% +1(9, — igzeA,) Baf

1)2 - ?}2 :
+ A <|<I>1\2 — ?> - <\<I>2\2 - ?> with @1 # ¢2

Among two phases 6; = Arg(®;) and 0y = Arg(®2), Oaxion = G201 — q102
one combination is eaten by A, ,and the other is
identified as massless axion with a decay constant

v
¥ 2 2
Vai + 4
String tension is given by that of gauge string:
T ~ 27v°
Tension becomes relatively high compared with
th ling of strings to axi ) —TN222
e coupling of strings to axions (x F7): k= 9 = (g1 + 93)
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Simulations with auxiliary fields

Klaer and Moore, JCAPI10(2017)043 [arXiv:1707.05566]
Klaer and Moore, JCAPI1 1(2017)049 [arXiv:1708.07521]

String density increases.

2
pstringt
— ~ 4
] 18

(cf. £ ~ 1 for scalar-only simulations)

Axion production becomes
less efficient than a naive
estimate based on the
realignment mechanism.

Prediction for axion DM mass:
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Scaled string density §

Efficiency n,./n i .ien

String density vs Tension

Bottom to top:
k=16.8, 32.8, 56.8, 88.8

mt,=300 Lt,=5.12
ksurl=24 mt'!larl= 80

mt,=300 ma=1.0
Kya=24 mt_, =80
1536° box: Lt.=5.12

k£ (string tension)
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Axion mass predictions

1012 1011

scalar-only strings (extrapolated)
[Kawasaki, KS, and Sekiguchi (2015)]

smeared strings (2D)
[Fleury and Moore (2016)]

strings with auxiliary fields I

[Klaer and Moore (2017)]
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Smaller masses are preferred in modified simulations.

Smaller mass means smaller axion production efficiency,
although strings become denser.

Large axion mean energy!? Is physics at smaller scales relevant?
(Cf- g ™~ pstring/<Ea>)

1 1/12



Summary

® Prediction for axion dark matter mass in the post-
inflationary PQ symmetry breaking scenario is tied
to the issue of global string dynamics.

® Potentially large uncertainty from corrections due



