Cosmology with galaxy surveys

Ramon Miquel ICREA / IFAE Barcelona

LST-1 inauguration, La Palma, October 11th, 2018

Disclaimer

- Cosmology studies the universe as a whole:
 - Its origin, evolution and ultimate fate: expansion, accelerated expansion.
 - Its ultimate components: baryonic matter, neutrinos, dark matter, dark energy.
 - The formation of the structures we see today: galaxies, clusters, filaments...
- Structure formation is the most complex problem in cosmology:
 - Complicated non-linear effects not fully under control.
 - In general, the larger the scale, the easiest the theoretical understanding, but then large surveys are needed to get to large scales (at least 5 Mpc).
- In this talk, I will concentrate on the issue of **dark energy**, arguably the most pressing problem in the whole of fundamental physics.
 - What is causing the current accelerated expansion of the universe?
 - If interpreted as a new component of the universe, DE comprises ~70% of it.

<u>Outline</u>

- Introduction: dark energy and galaxy surveys
- Survey of current and future galaxy surveys
- State of the art: BOSS + Planck
- Recent results from DES
- Status of the PAU Survey at ORM
- Multi-messenger astronomy for fundamental physics
- Conclusions

Intro: dark energy and galaxy surveys

- What is causing the acceleration of the expansion of the universe?
 - Einstein's cosmological constant Λ ?
 - Some new dynamical field ("quintessence," Higgs-like)?
 "Dark Energy"
 - Modifications to General Relativity?
- Dark energy effects can be studied in two main cosmological observables:
 - The history of the expansion rate of the universe: supernovae, weak lensing, baryon acoustic oscillations (BAO), cluster counting, etc.
 - The history of the rate of the growth of structure in the universe: weak lensing, large-scale structure, cluster counting, redshift-space distortions, etc.
- For all probes, large galaxy surveys are needed:
 - Spectroscopic: 3D (redshift), medium depth, low density, selection effects, BAO
 - Imaging: "2.5D" (photo-z), deeper, higher density, no selection effects, WL

Survey of galaxy surveys

2004 2006 2008 2010 2012 2014/2018 2020 2022 2024 2026 2028 2030

State of the art: BOSS

- BOSS finished data taking in 2014: ~9,400 deg²
- It measured the BAO scale in galaxies and Ly- α quasars

Neutrino mass

All next generation surveys have the sensitivity to reach a detection Ex: DESI (+ Planck) forecast a sensitivity ~ 0.02 eV

- Imaging galaxy survey on the 4-m Blanco telescope (Chile) to study Dark Energy.
- 350 scientists in 28 institutions in USA, Spain, UK, Brazil, Switzerland, Germany, Australia.
- Is mapping 1/8 of sky (5000 deg²) to z ~ 1.3 in 5 optical bands: 300 million galaxies.
- Started in 2013. 577 nights in 6 seasons.
- Four main dark energy probes:
 - Galaxy cluster counting.
 - Galaxy distribution (including BAO).
 - Type-la supernovae.
 - Weak gravitational lensing.

Blanco 4-meter telescope Cerro Tololo, Chile

4.00

in a single image

Weak gravitational lensing

an Tana an

A huge effort!

DARK ENERGY SURVEY

> Reduction of single-epoch images Astrometric solution Photometric calibration Co-addition into deep images Object detection Flux measurement Star / galaxy separation PSF extraction from stars **Shape measurement on galaxies**

Each bubble can represent months of development and millions of CPU hours.

DES Year-1 sample DARK ENERGY SURVEY **60**° 50° 40° 30° 20° 10° 0° $350^{\circ} 340^{\circ} 330^{\circ}$ $+10^{\circ}$ 7.8 **0**° 7.2 -10° 6.6 $n_g [\operatorname{arcmin}^{-2}]$ -20° 35 million galaxies -30° with measured shapes -40° 4.2 -50° 3.6 3.0

DES Year-1 mass map

DES-Y1 cosmological results (I)

- **S**₈ = $\sigma_8 (\Omega_m / 0.3)^{0.5}$ describes the **inhomogeneity of the matter distribution now**: σ_8 is the standard deviation of the matter-density distribution in spheres of radius 8 Mpc/h.
- Ω_m : fraction of matter in the total matter-energy of the universe now.
- First measurement in late universe with precision comparable to CMB.

DES-Y1 cosmological results (II)

- Measurement of the BAO feature in the angular separation of a sample of red galaxies.
- This is the highest-redshift photometric BAO measurement.
- Very competitive in the region 0.6 < z < 1.0.

DES-Y1 cosmological results (III)

- DES can combine cluster
 abundance as a function of
 mass and redshift with WL
 mass estimates.
- 6500 clusters in the redshift range 0.2 < z < 0.65, with mass calibration at 5% level.
- Cosmological constraints are competitive with those from WL + LSS.

DES-Y3 SNe cosmological results

- 206 new spectroscopic type-la
 SNe from DES Y1-Y3 in the range
 0.02 < z < 0.85, together with 128
 external low-z SNe.
- We are able to measure distances
 with 4% precision and determine
 the dark-energy equation of state w
 with a ± 0.057 precision (cf. ± 0.054
 in JLA (2014) with 740 SNe.

The PAU Survey at the ORM

- PAUCam built by Spanish consortium (Consolider-2010 project) led by IFAE.
- 40 narrow-band filters provide very precise redshifts.
- >100-night survey at WHT, including partners from Bonn, Leiden, ETH Zurich, Durham, UCL:
 - Redshift-space distortions.
 - Weak-lensing magnification.
 - Intrinsic galaxy alignments.
 - Photo-z calibration for DES, Euclid, LSST...
- Commissioning took place in 2015; science verification in spring 2016; survey started in fall 2016.
- First papers just appeared in the arXiv.

Photo-z measurements

- First results obtained using a sample of galaxies matched to those in the COSMOS field with spectroscopic redshifts.
- Using a quality cut that keeps 50% of the galaxies in the sample, we match the expectations from simulations:

 $\sigma_{68}(z) \lesssim 0.0035 \times (1+z)$

Eriksen et al., arXiv:1809:04375

Milky Way satellite galaxies

- ACDM predicts 100s of MW satellite galaxies
- These are very rich in dark matter (mass to light ratio > 100)
 - Excellent targets for indirect dark
 matter searches
- Spectroscopic campaigns confirmed candidates and measured J-factors
- Then, gamma-ray observations of confirmed dwarf galaxies

Red outline: DES footprint ○ : DES Y1 satellites ▲ : DES Y2 satellites

Drlica-Wagner et al. (DES Collaboration), ApJ 813 (2015) 109

Gamma ray searches in dwarf galaxies

DARK ENERGY SURVEY

Albert et al. (Fermi-LAT and DES), ApJ 834 (2017) 110

Gravitational waves from NS-NS

DARK ENERGY SURVEY

- Neutron star-neutron star mergers are "standard sirens": one can determine accurately the **distance** to the event from the GW signal.
- Since NS-NS mergers have optical counterparts, one can determine the host galaxy and its redshift
 → Hubble diagram.
- From the one local event GW170817, one can already determine H₀.

Soares-Santos et al., ApJ 848 (2017) L16

Abbott et al. (LIGO, Virgo, DES et al.), Nature 551 (2017) 85

Conclusions

- Dark Energy is a profound mystery that deserves the attention is receiving.
- Imaging/Spectroscopy, Ground/Space are complementary and synergistic:
 - Imaging: efficient; deep; 2.5D for many methods; allows weak lensing.
 - Spectroscopy: 3D info for BAO, RSD.
 - Space: exquisite, stable PSF for lensing; access to near-infrared.
 - Ground: larger telescopes allow fast, wide, deep surveys.
- DES-Y1 results represent a first powerful test of ACDM in the local universe.
- DES-Y3 (2019) and DES-Y6 (2021) will combine all probes and provide unprecedented constraints on the cosmological parameters.
- In the next decade, DESI, Euclid, and LSST will increase the precision on the dark energy parameters by an order of magnitude.
- Multi-messenger astronomy is starting to fulfill its promise, providing unique information on fundamental physics problems.