OCD and Jet Physics at e⁺e⁻ accelerators

- History of Strong Interactions
- QCD; confinement; asymptotic freedom
- hadronisation and hadron-jets
- Quark-Spin
- Gluon-Spin
- gluon self-coupling
- asymptotic freedom from jet rates
- determinations of α_s

QCD at hadron accelerators: -> WS

History of Strong Interactions (1)

- **1932**: discovery of neutrons **1933**: $\vec{\mu} \approx 2.5 \frac{e}{2 m_p} \vec{\sigma} \Rightarrow$ substructure of the protons
- **1947**: discovery of π -mesons and long-living V-particles (K⁰, Λ) in cosmic rays
- **1953**: V-particles produced at accelerators new inner quantum number ("strangeness").
- **1964**: static quark-model; new inner quantum number: colour

Meson

(π,K,...)

Baryon

(p,n, Λ,...)

History of Strong Interactions (2)

- **1964**: static quark model ; new inner quantum number: colour.
- **1969**: dynamic parton model :

- **1973**: concept of asymptotic freedom ; Quantum Chromo Dynamics.
- **1975**: 2-Jet structure in e⁺e⁻ annihilation: confirmation of quark-parton-model.
- **1979**: discovery of gluons in 3-Jet-events of e⁺ e⁻ -annihilations.

3-Jet event recorded with the OPAL Detector (1989-2000)

History of Strong Interactions (3)

1991: exp. signature of the gluon self coupling

= QCD $\alpha_s(M_Z) = 0.118 \pm 0.003$

O [GeV]

10

0.5

0.4

0.3

0.2

0.1

1990-2000: confirmation of asymptotic freedom

2004: Nobel Prize (concept of A.F.) to D. Gross, H.D. Politzer und F. Wilczek

100

QCD:

- gauge-field theory of Strong Interactions
- underlying gauge group: SU(3) ; non-abelian
- force mediating particles/quanta: gluons
- self-coupling of gluons
- renormalised coupling constant α_s is energy dependent:
- α_s large at small energies (large distances): confinement of quarks
- α_s small at large energies (small distancies): asymptotic freedom of quarks

properties of QED and QCD:

-	QED	QCD		
fermions	<i>leptons</i> (<i>e</i> , μ,τ)	quarks (u, d, s, c, b, t)		
force couples to	electric charge	<u>3 color-charges</u>		
exchange quantum	<i>photon</i> (γ) (carries no charge)	$\frac{gluons(g)}{(carry 2 color charges)} \xrightarrow{g}_{g}^{g} \xrightarrow{g}_{g}^{g} \xrightarrow{g}_{g}^{g}$		
coupling "constant"	$\alpha(Q^2=0) = \frac{1}{137}$	$\alpha_s(Q^2 = M_Z^2) \approx 0.12$		
free particles	<i>leptons</i> (<i>e</i> , μ,τ)	(color neutral bound states of q and \overline{q}) <i>Hadronen</i>		
theory	perturbation theory up to $O(\!lpha^5)$	perturbation theory up to $O(\alpha_s^4)$		
precision achieved	10 ⁻⁶ 10 ⁻⁷	0.1% 20%		

<u>Warum gibt es keine freien Quarks?</u>

energy dependence of coupling "constant":

renormalisation group equation ("β-function")

• in leading order perturbation theory:

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \alpha_i(\mu) = -\beta_0 \alpha_i^2 \qquad \text{with} \quad \beta_0 = \frac{1}{2\pi} \left[\frac{11}{3} \begin{pmatrix} N_c \equiv 0 \\ N_c \equiv 2 \\ N_c \equiv 3 \end{pmatrix} - \frac{4}{3} \begin{pmatrix} N_{fam} \\ N_{fam} \\ N_f / 2 \end{pmatrix} - N_{Higgs} \begin{pmatrix} \frac{1}{10} \\ \frac{1}{6} \\ 0 \end{pmatrix} \right] \xleftarrow{} QED \iff QED$$

• integration \Rightarrow

$$\alpha_i(q^2) = \frac{\alpha_i(\mu^2)}{1 + \frac{\beta_0}{2}\alpha_i(\mu^2)\ln\frac{q^2}{\mu^2}}$$

• Integration \Rightarrow α_i

energy dependence of coupling "constants":

• experimentally verified with high precision

Anatomy of hadronic events in e^+e^- annihilation

- QCD: shower development calculated in perturbation theory (fixed order; (N)LLA)
- Hadronisation: phenomenological models of string-, cluster- or dipole fragmentation
- Decays: randomized according to experimental decay tables

physics of hadron-jets

In order to compare hadron-jets with analytic QCD - calculations (quark- and gluon dynamics) one must define resolvable particle jets

in theory and in experiment

however:

for this one needs:

- definition of resolution criteria (e.g. minimal invariant pair mass, minimal angle, minimal energies ..)
- prescription of how to combine nonresolvable jets

there is no "natural" definition of jets !

overlapping jets \rightarrow collinear divergencies

low energy jets → infrared divergencies

Durham - jet definition: (mostly used in e⁺ e⁻ - annihilation)

2 groups of particles, i and j, can be resolved if the minimal transversal energy of the 4-vectors, $y_{ij} = 1/2 \min(E_i^2, E_j^2) \cdot (1 - \cos(\theta_{ij}), \text{satisfies:} \quad y_{ij} \ge y_{cut}$ If $y_{ij} < y_{cut}$, the 'proto-jets' i and j are replaced by a new proton-jet k (recombination) $p_k = p_i + p_j$ (recursive procedure, starting with smallest y_{ij} , until all $y_{ij} \ge y_{cut}$).

Test of basic quantum numbers (q-, g-spin):

Quark-Spin = $1/2 \iff \frac{d\sigma}{d\theta} \sim (1 + \cos^2\theta)$

coarse structure:quarks have spin 1/2fine structure:deviation from 1 + cos $^2\theta$ is due to electro-weak interferencecontributions of 4.5%;sin $^2\theta_w = 0.2255 \pm 0.00212$

Orientation of Gluon-Jets in 3-Jet-Events:

Test of the Gluon-Spin (QCD: g-spin = 1)

Non-Abelian gauge structure from 4-jet events

Asymptotic Freedom (running α_s) Historically (1987):

energy dependence of 3-jet production rates (R₃): $R_3 = C_1(y_{cut}) \cdot \alpha_s(\mu) + C_2(y_{cut}) \cdot \alpha_s^2(\mu)$

Asymptotic Freedom from jet rates

Particle Physics with cosmic and with terrestrial accelerators TUM SS18 S.Bethke V6: QCD and Jet Physics

Experimental Determination of α_s

in all processes in which gluons occur:

• e+e-annihilations

- total hadronic production cross section
- hadronic decay widths of the Z^0 and of the τ
- jet rates and shape variables
- deep inelastic lepton-nucleon-scattering
 - scaling violations of structure functions
 - sum rules of structure functions
 - jet rates and shape variables
- proton-(anti-)proton collisions
 - jet rates
 - photoproduction
 - t-quark production cross section

running α_s up to 4th order:

$$Q^2 \frac{\partial \alpha_{\rm s}(Q^2)}{\partial Q^2} = \beta \left(\alpha_{\rm s}(Q^2) \right)$$

 $\beta(\alpha_{\rm s}(Q^2)) = -\beta_0 \alpha_{\rm s}^2(Q^2) - \beta_1 \alpha_{\rm s}^3(Q^2) - \beta_2 \alpha_{\rm s}^4(Q^2) - \beta_3 \alpha_{\rm s}^5(Q^2) + \mathcal{O}(\alpha_{\rm s}^6)$

$$\begin{split} \beta_0 &= \frac{33 - 2N_f}{12\pi} ,\\ \beta_1 &= \frac{153 - 19N_f}{24\pi^2} ,\\ \beta_2 &= \frac{77139 - 15099N_f + 325N_f^2}{3456\pi^3} ,\\ \beta_3 &\approx \frac{29243 - 6946.3N_f + 405.089N_f^2 + 1.49931N_f^3}{256\pi^4} \end{split}$$

$$\begin{split} \alpha_{\rm s}(Q^2) &= \frac{1}{\beta_0 L} - \frac{1}{\beta_0^3 L^2} \beta_1 \ln L & \text{Ritbergen,} \\ &+ \frac{1}{\beta_0^3 L^3} \left(\frac{\beta_1^2}{\beta_0^2} \left(\ln^2 L - \ln L - 1 \right) + \frac{\beta_2}{\beta_0} \right) & \text{Larin} \\ &+ \frac{1}{\beta_0^4 L^4} \left(\frac{\beta_1^3}{\beta_0^3} \left(-\ln^3 L + \frac{5}{2} \ln^2 L + 2 \ln L - \frac{1}{2} \right) - 3 \frac{\beta_1 \beta_2}{\beta_0^2} \ln L + \frac{\beta_3}{2\beta_0} \right) & L = \ln \frac{Q^2}{\Lambda_{\overline{MS}}^2} \\ \end{split}$$

 β_0 and β_1 do not depend on renormalisation scheme; β_2 and β_3 ... do !

choose MS scheme for all of the following discussion.

Particle Physics with cosmic and with terrestrial accelerators TUM SS18 S.Bethke V6: QCD and Jet Physics

relative size of higher order corrections

heavy quark threshold matching

Matching conditions for the choice $\mu^{(Nf)} = M_q$ (pole mass definition): $\frac{a'}{a} = 1 + C_2 \ a^2 + C_3 \ a^3$ (with $a' = \alpha_s^{(Nf-1)/\pi}$; $a = \alpha_s^{(Nf)/\pi}$) $C_2 = -0.291667$ and $C_3 = -5.32389 + (N_f - 1) \cdot 0.26247$

Particle Physics with cosmic and with terrestrial accelerators TUM SS18 S.Bethke V6: QCD and Jet Physics

perturbative predictions for physical quantities

$$\mathcal{R}(Q^2) = P_l \sum_n R_n \alpha_s^n$$

= $P_l \left(R_0 + R_1 \alpha_s(\mu^2) + R_2 (Q^2/\mu^2) \alpha_s^2(\mu^2) + \dots \right)$

in n^{th} order perturbation theory

 R_1 : "leading order coefficient" (lo) R_2 : "next to leading coefficient" (nlo) R_3 : "next-next-to leading" (nnlo)

Resummation of logs arising from soft and collinear singularities:

$$\Sigma(\mathcal{R}) \equiv \int_0^{\mathcal{R}} \frac{1}{\sigma} \frac{d\sigma}{d\mathcal{R}} d\mathcal{R} = C(\alpha_s) \exp\left[G(\alpha_s, L)\right] + D(\alpha_s, \mathcal{R}) \qquad L = \ln(1/\mathcal{R}) \qquad C(\alpha_s) = 1 + \sum_{n=1}^{\infty} C_n \hat{\alpha}_s^n$$
$$G(\alpha_s, L) = \sum_{n=1}^{\infty} \sum_{m=1}^{n+1} G_{nm} \hat{\alpha}_s^n L^m$$

$$\equiv Lg_1(\alpha_{\rm s}L) + g_2(\alpha_{\rm s}L) + \alpha_{\rm s}g_3(\alpha_{\rm s}L) + \alpha_{\rm s}^2g_4(\alpha_{\rm s}L) \cdots$$

	Leading	Next-to-	Subleading	Non-log.	
	$\log s$	Leading logs	$\log s$	terms	
$\ln \Sigma(\mathcal{R}) =$	$G_{12}\hat{lpha}_s L^2$	$+G_{11}\hat{\alpha}_s L$		$+ \alpha_{\rm s} \mathcal{O}(1)$	$\mathcal{O}(\alpha_{\rm s})$
	$+G_{23}\hat\alpha_s^2L^3$	$+G_{22}\hat{\alpha}_s^2L^2$	$+G_{21}\hat{lpha}_s^2L$	$+ \alpha_{\rm s}^2 \mathcal{O}(1)$	$\mathcal{O}(\alpha_{\rm s}^2)$
	$+G_{34}\hat\alpha_s^3L^4$	$+G_{33}\hat\alpha_s^3L^3$	$+ G_{32}\hat{\alpha}_s^3 L^2 + \cdots$	$+\cdots$	$\mathcal{O}(lpha_{ m s}^3)$
	$+\cdots$	$+\cdots$	$+\cdots$	$+\cdots$	÷
=	$Lg_1(\alpha_{\rm s}L)$	$+g_2(\alpha_{\rm s}L)$	$+\cdots$	$+\cdots$	

renormalisation scale dependence

$$\mathcal{R} \equiv \mathcal{R}(Q^2/\mu^2, \alpha_{\rm s}); \ \alpha_{\rm s} \equiv \alpha_{\rm s}(\mu^2)$$

since choice of μ is arbitrary, physical observables \mathcal{R} should not depend on μ

$$\begin{split} \mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \mathcal{R}(Q^2/\mu^2, \alpha_{\mathrm{s}}) &= \left(\mu^2 \frac{\partial}{\partial\mu^2} + \mu^2 \frac{\partial\alpha_{\mathrm{s}}}{\partial\mu^2} \frac{\partial}{\partial\alpha_{\mathrm{s}}}\right) \mathcal{R} \stackrel{!}{=} 0\\ 0 &= \mu^2 \frac{\partial R_0}{\partial\mu^2} + \alpha_{\mathrm{s}}(\mu^2) \mu^2 \frac{\partial R_1}{\partial\mu^2} + \alpha_{\mathrm{s}}^2(\mu^2) \left[\mu^2 \frac{\partial R_2}{\partial\mu^2} - R_1 \beta_0\right] \\ &+ \alpha_{\mathrm{s}}^3(\mu^2) \left[\mu^2 \frac{\partial R_3}{\partial\mu^2} - \left[R_1 \beta_1 + 2R_2 \beta_0\right]\right] \\ &+ \mathcal{O}(\alpha_{\mathrm{s}}^4) \;. \end{split}$$

$$\begin{array}{l} \longrightarrow & R_0 = \text{const.}, \\ R_1 = \text{const.}, \\ R_2 \left(\frac{Q^2}{\mu^2}\right) = R_2(1) - \beta_0 R_1 \ln \frac{Q^2}{\mu^2}, \\ R_3 \left(\frac{Q^2}{\mu^2}\right) = R_3(1) - \left[2R_2(1)\beta_0 + R_1\beta_1\right] \ln \frac{Q^2}{\mu^2} + R_1\beta_0^2 \ln^2 \frac{Q^2}{\mu^2} \end{array}$$

Perturbative QCD coefficients beyond leading order become renormalisation scale dependend ! This dependence is used to quantify theoretical uncertainties due to unknown higher orders.

hadronic width of Z⁰ boson

α_{s} from τ -decays

$$R_{\tau} = \frac{\Gamma(\tau \rightarrow \text{hadrons } v_{\tau})}{\Gamma(\tau \rightarrow e v_e v_t)}$$

 $QCD: \quad R_{\tau} = 3.058(1.001 + \delta_{pert} + \delta_{nonpert})$

$$\delta_{pert} = \frac{\alpha_s(m_\tau)}{\pi} + 5.20 \left(\frac{\alpha_s(m_\tau)}{\pi}\right)^2 + 26.37 \left(\frac{\alpha_s(m_\tau)}{\pi}\right)^3$$

measurements of R as well as the mass spectra of hadronic τ -decays and comparison

with $O(\alpha_s^3)$ perturbative QCD results in $\alpha_s(M_\tau)$ also provides an independent determination of the leading nonperturbative contributions $\delta_{nonpert}$

 $a_s(M_z) = 0.1213 \pm 0.0006 \text{ exp} \pm 0.0010 \text{ theo}$

<u> </u>
Ω
/a
Se
9
\bigcirc
Φ
Q
S
nt S
ent S
Event S

		Typical Value for:			
Name of Observable	Definition	€	$\dot{\checkmark}$	*	QCD calculation
Thrust	$T = \max_{\vec{n}} \left(\frac{\sum_{i} \vec{p}_{i}\vec{n} }{\sum_{i} \vec{p}_{i} } \right)$	1	≥2/3	≥1/2	$\frac{(\text{resummed})}{O(\alpha_s^2)}$
Thrust major	Like T, however T_{maj} and \vec{n}_{maj} in plane $\perp \vec{n}_{T}$	0	≤1/3	≤1/√2	$O(\alpha_s^2)$
Thrust minor	Like T, however T_{min} and \vec{n}_{min} in direction \perp to \vec{n}_{T} and \vec{n}_{maj}	0	0	≤1/2	$O(\alpha_s^2)$
Oblateness	$O = T_{maj} - T_{min}$	0	≤1/3	0	$O(\alpha_s^2)$
Sphericity	$S = 1.5 (Q_1 + Q_2); Q_1 \le \dots \le Q_3 \text{ are}$ Eigenvalues of $S^{\alpha\beta} = \frac{\sum_i p_i^{\alpha} p_i}{\sum_i p_i^2}$	0	≤3/4	≤l	none (not infrared safe)
Aplanarity	A = 1.5 Q ₁	0	0	≤1/2	none (not infrared safe)
Jet (Hemis- phere) masses	$M_{\pm}^{2} = \left(\sum_{i} E_{i}^{2} - \sum_{i} \vec{p}_{i}^{2}\right)_{i \in S_{\pm}}$ $(S_{\pm}: \text{ Hemispheres } \pm \text{ to } \vec{n}_{T})$ $M_{H}^{2} = \max(M_{\pm}^{2}M_{-}^{2})$ $M_{D}^{2} = M_{\pm}^{2} - M_{-}^{2} $	0	≤1/3 ≤1/3	≤1/2 0	(resummed) $O(\alpha_s^2)$
Jet broadening	$B_{\pm} = \frac{\sum_{i \in S_{\pm}} \vec{p}_i \times \vec{n}_T }{2 \sum_i \vec{p}_i }; B_T = B_+ + B$ $B_w = \max(B_+, B)$	0	≤1/(2√3) ≤1/(2√3)	≤1/(2√2) ≤1/(2√3)	(resummed) $O(\alpha_s^2)$
Energy-Energy Correlations	$EEC(\chi) = \sum_{event} \int_{\chi^{+} \frac{\Delta \chi}{2} i, j}^{\chi^{-} \frac{\Delta \chi}{2}} \sum_{i,j} \frac{E_i E_j}{E_{vis}^2} \delta(\chi - \chi_{ij}) d\chi$			0 π	$(\frac{\text{resummed}}{O(\alpha_s^2)})$
Asymmetry of EEC	$AEEC(\chi) = EEC(\pi - \chi) - EEC(\chi)$	0	π/2 0 π/2	2 0 π/2	$O(\alpha_s^2)$
Differential 2-jet rate	$D_2(y) = \frac{R_2(y - \Delta y) - R_2(y)}{\Delta y}$				$(\frac{\text{resummed}}{O(\alpha_s^2)})$

Jet production and hadronic event shapes

Particle Physics with cosmic and with terrestrial accelerators TUM SS18 S.Bethke V6: QCD and Jet Physics

 α_s from jet rates und event shapes in NNLO QCD:

global summary of α_s determinations:

Evidence for Asymptotic Freedom:

Summary:

- QCD established as gauge field theory of Strong Interactions:
 - asymptotic freedom from energy dependence of jet rates and of $\,\alpha_{s}$
 - colour charge of gluons established
 - spins der Quarks (1/2) and gluons (1) verified
- quarks and gluons don't exist as free particles, but only in bound, "colourless" states (hadrons)
- at high energies, hadrons resemble the directions of produced primary quarks and gluonen ("jets")
- precise measurements of properties of jets provide quantitative Tests der QCD
- determination of α_s from many reactions: $\alpha_s(M_Z) \sim 0.12$ (0.1181 ± 0.0011)

Literaturempfehlungen

- Ellis, Stirling, Webber: "QCD and Collider Physics", Cambridge Monographs,
- A QCD primer, G. Altarelli, CERN School 2001, http://preprints.cern.ch/cernrep/2002/2002-002/2002-002.html
- Quantum Chromodynamics, M.H.Seymour, 2004 European School of High-Energy Physics, hep-ph/0505192
- *QCD Studies at LEP*, S. Bethke, Phys. Rept. 403-404 (2004) 203-220, hep-ex/0406058
- *The 2009 World Average of alpha(s)*, S. Bethke, Eur.Phys.J. C64:689-703, 2009. arXiv:0908.1135 [hep-ph]
- *Review of Particle Physics*, Chin.Phys. C40 (2016) 100001 . http://pdg.lbl.gov/2016/reviews/contents_sports.html