Teilchenphysik mit kosmischen und mit erdgebundenen Beschleunigern

13. Neutrinos II - Precision Oscillation Studies with Man-made Neutrinos, Cosmic Neutrinos

09.07.2018

Dr. Frank Simon

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Where we left off last time: Neutrino Oscillations: Overall Picture

Neutrino Oscillations - Status

- Two distinct types of oscillations (with quite different mass splittings) have been observed:
 - Solar disappearance of v_e , $\Delta m^2 \sim 7.6 \times 10^{-5} \text{ eV}^2$
 - Atmospheric disappearance of v_{μ} , $\Delta m^2 \sim 2.4 \times 10^{-3} \text{ eV}^2$
- Choice of convention: small splitting between v_1 and v_2 , big between v_1/v_2 and v_3
- The data tell us: mixing between v_1 and v_3 is small
 - In solar oscillations, we observe v₁ → v₂ oscillations, v₁ has to have a big v_e component
 - In atmospheric oscillations, we observe v₂ → v₃, with maximal mixing: v₃ is (almost) a 50-50 mixture of v_τ and v_µ

Neutrino-Oscillations: The Resulting Picture

 $\Delta m_{atm}^2 \sim 2.4 \text{ x } 10^{-3} \text{ eV}^2$

 $\Delta m^{2}_{sol} \sim 7.6 \times 10^{-5} \text{ eV}^{2}$

One neutrino has to have a mass of at least ~ 0.05 eV!

Solar and atmospheric oscillations probe two of the three mixing angles - the 3rd (smallest) needs "laboratory" experiments

4

• Absolute masses and hierarchy not known yet! Two possible arrangements...

Measurements with man-made Neutrinos

Man-made Neutrino Sources

• Two main sources for neutrinos used for oscillation experiments:

nuclear power reactors

high energy accelerators

Reactor Neutrinos

• A rich spectrum of anti-electron neutrinos - Energies in the MeV range

The Reactor Neutrino Spectrum

- A key component of reactor experiments: Understanding the neutrino flux and energy spectrum
 - Highly non-trivial: Many fission and complex decay chains involved

KamLAND: Using Reactors to prove Solar Oscillations

 For few MeV Neutrinos and "Large Mixing Angle" solution of solar observations: Need a baseline of ~ 100 km

The KamLAND Experiment

The KamLAND Experiment

• Neutrino detection in KamLAND (and other reactor experiments):

$$\overline{\nu}_e + p \rightarrow n + e^+$$

- Two-component signature:
 - Prompt signal: Ionisation energy from e⁺, annihilation photons
 - Delayed signal: Photon from neutron capture

Universal feature: Only electron (anti-) neutrinos can be detected in CC reactions -Energy threshold for muon neutrinos > 105 MeV: Reactor experiments are **disappearance experiments**

KamLAND: Proving Solar Oscillations

Consistent with large mixing angle solution for solar observations

together with SNO:

 $\tan^2 \theta_{12} = 0.47^{+0.06}_{-0.05}$ (34.4 degrees) $\Delta m^2_{21} = 7.59^{+0.21}_{-0.21} \times 10^{-5} \,\mathrm{eV}^2$

Going beyond the leading Oscillation

 Oscillations of reactor (and solar) neutrinos are dominated by the 1->2 transition - but that is not all:

Illustrated for mono-energetic anti-electron neutrinos with E = 4 MeV

Daya Bay: Measuring Θ₁₃

Daya Bay Detectors

- Liquid scintillator detectors (20t)
 - Gd doped to improve neutron capture for secondary signal
- Water-based veto

Daya Bay Oscillation Signal

Teilchenphysik mit kosmischen und erdgebundenen Beschleunigern: SS 2018, 13: Neutrinos II

Frank Simon (fsimon@mpp.mpg.de) 16

Daya Bay Result

Daya Bay is not alone: Other experiments: Double Chooz (France), RENO (Korea)

The Next Generation of Reactor Experiments

• JUNO: Measure the mass ordering of neutrinos

Neutrinos at Accelerators

- Neutrino production:
 - Analogous to air showers: hadronic showers on impact of highly energetic protons on production target
 - Production of pions, kaons that decay in a decay tunnel:

$$\pi^-, K^- \rightarrow \mu^- + \bar{\nu}_\mu$$

- Tunnel not long enough for substantial decay of muons: Essentially pure v_{μ} beam
- There have been many different experiments with accelerator neutrinos
 - Study of the weak interaction
 - Measurement of the quark composition of nuclei
 - Discovery of the v_{τ}
 - Confirmation of atmospheric measurements
 - Evidence for non-zero θ_{13}
 - First hints for CP violation

Making A Neutrino Beam

Long Baseline Experiments

- Neutrino beam produced with accelerator
- Reference measurement with a "Near Detector"
- Detection of neutrinos in a "Far Detector"
- Choice of distance and energy depends the region of the mixing matrix that can be probed

The composition of the beam changes from source to detector From a pure v_{μ} beam to a mixture of v_{μ} , v_{τ} and a few v_{e} ($\theta_{13} \neq 0$)

T2K: Neutrino Beam to SuperK

- Goal: precise measurement of atmosph. oscillation, θ_{13} , possible CP violation
- Runs since 2010 (with 1 year down time due to Tohoku Earthquake)

Teilchenphysik mit kosmischen und erdgebundenen Beschleunigern: SS 2018, 13: Neutrinos II

T2K - The Choice of the Right Baseline

Almost complete disappearance of v_μ:

Also optimal for a measurement of θ_{13} !

Atmospheric & Accelerators: The Global Picture

 Super-K atmospheric compared to accelerator long baseline: all fits together, accelerators give the most precise results by now

CNGS / OPERA - Confirmation

 One of the goals: Direct observation of oscillations of v_µ to v_τ in a v_µ Long Baseline Beam (CERN → Gran Sasso)

- Magnetic spectrometer for
 track and energy
 reconstruction, in between
 blocks of photo emulsion for
 precise reconstruction of
 tracks at the interaction vertex
 - If an interesting event is observed in the spectrometer, the corresponding block is extracted and examined

OPERA: First v_{τ} Candidate

In total 4 additional v_τ have been observed -"5 -sigma discovery": matches expectations

 v_{τ} produces τ , fast decay into μ and vs \Rightarrow Proof, that the atmospheric oscillation is $v_{\mu} \rightarrow v_{\tau}$

OPERA Press Release, 31.05.2010

Measuring θ₁₃ at Accelerators

- θ_{13} describes $v_1 \rightarrow v_3$ oscillations: Squared mass differences (almost) as in the atmospheric case, but transitions involving v_e (large v_e component in v_1 !)
 - With a v_{μ} beam, θ_{13} is accessible through the subdominant oscillation from v_{μ} to v_e (the dominant oscillation is v_{μ} to v_{τ})

T2K - Oscillation Results

• Observation of $v_{\mu} \rightarrow v_{e}$ oscillations :

T2K was first - but best results currently from Daya Bay (see above)

Searching for CP Violation in the v - Sector

- CP Violation: A difference between matter and antimatter
- In the SM: Generated by the complex phase in the mixing matrix (Quarks, vs), if $\delta \neq 0$
 - Shows up in differences in oscillation behavior between neutrinos and antineutrinos!

$$\begin{aligned} P(\nu_{\mu} \rightarrow \nu_{e}) &\simeq \boxed{\sin^{2} 2\theta_{13} \times \sin^{2} \theta_{23} \times \frac{\sin^{2}[(1-x)\Delta]}{(1-x)^{2}}} \underbrace{Phys. Rev. D64 (2001) 053003}_{\text{Leading term}} \\ \text{CP violating} & \bigcirc \alpha (\sin \delta_{CP}) \times \sin^{2} 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \times \sin \Delta \frac{\sin[x\Delta]}{x} \frac{\sin[(1-x)\Delta]}{(1-x)} \\ \text{CP conserving} & \alpha (\cos \delta_{CP}) \times \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \times \cos \Delta \frac{\sin[x\Delta]}{x} \frac{\sin[(1-x)\Delta]}{(1-x)} \\ + O(\alpha^{2}) & x = \frac{2\sqrt{(2)}G_{F}N_{e}E}{\Delta m_{31}^{2}} \quad \alpha = |\frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}}| \sim \frac{1}{30} \quad \Delta = \frac{\Delta m_{31}^{2}L}{4E} \end{aligned}$$

First Results from T2K - 2016

Future Measurements of CP Violation

 The "next big thing" in neutrino physics - with future experiments to make definitive measurements

Neutrinos are still mysterious

- The standard three-flavor neutrino picture is by now quite well understood
 - Missing: mass ordering, CP phase δ
- There are intriguing puzzles both in reactor and accelerator-based experiments:
 - "Reactor Anomaly": Deficit of electron anti-neutrinos already at very short baselines - Oscillations or problems in the reactor modeling?
 - Possible indications for very short baseline oscillations of muon neutrinos (LSND, MiniBooNE)

Hints for sterile neutrinos?

Future experiments will (hopefully) tell...

Now History: Neutrino Speed

 Measurement of the neutrino flight time - Synchronisation of clocks at CERN and Opera via GPS

First Attempt - Spectacular Result

 September 2011: Opera observes, that the neutrinos are 60 ns too fast (with an uncertainties of 10 ns).

Technique: "edges" of the neutrino distribution in Opera, relative to the proton pulse -at CERN - statistical method, possible uncertainties from beam focusing (time structure of the neutrino pulse)

The Confirmation

 New measurements with pulsed beam, beam pulses 3 ns FWHM - direct measurement of flight time!

Confirms original results: beam structure as cause excluded

Uncertainty now only 4 ns (for a "signal" of 60 ns)

... but N.B.: There are corrections of 40 μs for signal running times in the electronics!

The Resolution

 As most had expected - It was a measurement error: An optical fiber of the timing system was not correctly plugged in - Resulted in a slower signal rise on the corresponding photo diode, the clock is a bit later due to later passing of threshold, voila...

Now: The time of flight is bang on, within a few ns!

Neutrinos from Cosmic Sources

Cosmic Neutrinos

- Few events:
 - Huge detectors required
 - Very good shielding: The full earth
 - does not work for the highest energies: neutrino cross section rises with energy, above ~100 TeV neutrinos are absorbed by earth

Supernova Neutrinos

Neutrinos from the core collapse of a star - Production of all neutrino flavors
 Formation of a neutron star:

$$A + e^- \to A' + \nu_e$$

Thermal production of electron - positron pairs in the accretion disc, followed by neutrino production (all flavors)

$$\gamma + \gamma \rightarrow e^+ + e^ e^+ + e^- \rightarrow \nu + \bar{\nu}$$

Neutrinos are initially the first particles that can leave the explosion zone, all others are absorbed in the extremely dense, collapsing material: The neutrino signal reaches Earth before the optical signal!

A large fraction of the gravitational energy of the star is emitted in the form of neutrinos, the typical energies are in the few 10 MeV range

Supernova SN1987a

• Supernova explosion 1987 in the Large Magelanic Cloud

Kamiokande Signal

A confirmed extraterrestrial signal

Cosmic Neutrinos: Expectations

cosmogenic neutrinos: Produced in decays of pions from GZK events: Could give hints on sources and production mechanisms of highestenergy cosmic rays

in principle a "guaranteed discovery" with enough sensitivity

Detectors for Neutrino Astronomy

- Different detection techniques, depend on energy and sensitivity
- Energies in the TeV PeV range:
 - Cherenkov detectors: large signal, relatively low energy threshold, requires a high sensor density due to light absorption
 - Amanda/IceCube: Antarctic ice as Cherenkov medium
 - Antares/Baikal/KM3NeT: Deep sea (or lake) water as Cherenkov medium
- Energies above 10¹⁷ 10¹⁹ eV:
 - Optical detection of neutrino-induced air showers: Auger, EUSO, ...
 - Acoustic detection of neutrino-induced showers in water, ice, salt:
 - Sound waves through heating of the material
 - Cherenkov radio waves from electromagnetic showers induced by v_{e}
 - high range, sufficient signal for extreme energies
 - First tests with RICE in Antarctic ice, now preparing ARIANNA for higher sensitivity

Antares

• 2.5 km deep off the southern coast of France (Toulon, between Marseille and Saint Tropez)

Amanda/IceCube

Amanda/IceCube: Neutrinos at the South Pole

Amanda/IceCube: Neutrinos at the South Pole

- Detectors for Cherenkov light: DOM (Digital-Optical Module)
- Total: 80 strings with 60 DOMs each

IceCube Event

 Arrival time of light at individual detectors allows the determination of the muon direction and with that the direction of the neutrino

Highest Energies - First Observation 2012

IceCube has observed two events:

1.14±0.17 PeV

©2013 Sesame Workshop

1.04±0.16 PeV

(visible energy in the detector, neutrino energy higher)

- Both events are "down-going" (as expected)
- Requires specialized event selection to exclude atmospheric neutrinos

Quite a few events observed by now (60 > 60 TeV) - highest energy 5.9 PeV

Neutrinos at Highest Energies

Summary

- Neutrino experiments using reactor and accelerator neutrinos have
 - confirmed the observations with solar and atmospheric neutrinos with high precision
 - made a precise measurement of the third mixing angle Θ_{13}
 - provided first indications for a non-zero CP violating phase
- Upcoming experiments will
 - determine the neutrino mass ordering (JUNO + DUNE)
 - discover and measure CP violation in the neutrino sector if it exists (DUNE, HyperK)
- Cosmic neutrinos have been observed
 - from the core-colapse supernova SN1987A
 - PeV neutrinos from so-far unknown (but extraterrestrial) origin
 - Watch out for an announcement by ICECUBE on Thursday multi-messenger neutrino astronomy

Thanks for attending the lecture - and have a great Summer!

Lecture Overview

09.04.	Einführung / Introduction
16.04.	Ground-based Accelerators
23.04.	Cosmic Accelerators
30.04.	Detectors in Astroparticle Physics
07.05.	The Standard Model
14.05.	QCD and Jets at e+e- Colliders
21.05.	Holiday - No Lecture
28.05.	Precision Experiments with low-energy accelerators
04.06.	Dark Matter & Dark Energy
11.06.	Cosmic Rays I
18.06.	Cosmic Rays II
25.06.	Gravitational Waves, Neutrino Introduction
02.07.	Neutrinos I
09.07.	Neutrinos II

