

3D Material Decomposition Using Synchrotron-Based MicroCT

Motivation

- localize specific materials in sample:
 - a) in 3D
 - b) non-destructively
 - c) quantitatively
 - d) submicron resolution

Why?

➢here: localize contrast-enhancing materials in soft-tissue

≻useful in material science, quality assurance, ...

Approach

- employ X-rays and their interaction with matter to probe sample
- 3 dominant processes:
 - a) Thomson (elastic) scattering
 - b) Compton (inelastic) scattering
 - c) Photoelectric absorption
- exploit material and energydependency of the interaction cross-sections

 $\sigma_C = \sigma_{KN}(E) \cdot Z$

Image Formation

- contact-plane: Lambert-Beer-Law
- \rightarrow integrated attenuation coefficient

$$I(x, y, z) = I_0 \exp[-\int \mu(x, y, z) dz]$$
$$\mu(x, y, z) = \frac{\rho_m N_A}{M} \cdot \sigma_a$$

 \rightarrow tomographic reconstruction

$$f(x,y) = \int_0^{\pi} d\theta \ \mathcal{F}_S^{-1}\{|S| \cdot \mathcal{F}_S \Re f\}$$

$$\uparrow$$

$$\mu(x,y)$$

Material Decomposition

- use energy dependency to decompose into basis materials *i*
- *mass* attenuation coefficients tabulated
- \rightarrow retrieve densities

requirement: linear independence !

$$\mu(E) = \sum_{i}^{N} \mu_{i}(E) = \sum_{i}^{N} \left(\frac{\tilde{\mu}_{i}(E)}{\rho}\right) \cdot \rho_{i}$$

$$\begin{pmatrix} \rho_1 \\ \vdots \\ \rho_N \end{pmatrix} = \begin{pmatrix} \left(\frac{\widetilde{\mu}_1(E_1)}{\rho}\right) & \cdots & \left(\frac{\widetilde{\mu}_N(E_1)}{\rho}\right) \\ \vdots & \ddots & \vdots \\ \left(\frac{\widetilde{\mu}_1(E_N)}{\rho}\right) & \cdots & \left(\frac{\widetilde{\mu}_N(E_N)}{\rho}\right) \end{pmatrix}^{-1} \begin{pmatrix} \mu(E_1) \\ \vdots \\ \mu(E_N) \end{pmatrix}$$

Experiment

 $\frac{1}{\int \Delta_{p} \Delta_{g} \ge \frac{1}{2} t}$ Max-Planck-Institut für Physik

CCD

- P05 beamline at DESY
- phantom: glass capillaries filled with different solutions
- feasibility test:
 - simple geometry
 - known densities
 - "low" resolution

Results: Phantom

15

7.5

0

- beam energies: 15, 25, 35 keV
- iodine (top right): K-edge at 33.2 keV

Results: Phantom

- decomposition into basis materials:
 - a) glass
 - b) water
 - c) respective contrast agent

density of Br [g/cm³]

- artifacts:
 - beam starvation
 - moving beam feature
- \rightarrow use only 2 energies

Results: Phantom

- decomposition into basis materials:
 - a) glass
 - b) water
 - c) respective contrast agent

 $\rho_{the} = 0.150$

 $\rho_{exp}=0.146\pm0.007$

- artifacts:
 - beam starvation
 - moving beam feature
- \rightarrow use only 2 energies

Results: Soft-Tissue

- additional difficulties:
 - a) marginal attenuation
 - b) no reference
 - c) higher resolution (!)
 - \rightarrow spatial registration
 - \rightarrow phase effects

$$I(x, y, z = d) \approx I(x, y, z = 0) - \frac{d\lambda}{2\pi} \underbrace{\nabla_{\perp} \cdot \left[I(x, y, z = 0) \nabla_{\perp} \phi(x, y, z = 0)\right]}_{=}$$

Results: Soft-Tissue

poor signal-noise ratio
phase-retrieval (Paganin) to reduce fringes

- large error in $\mu(x, y)$
- similar energy-dependency \rightarrow large anti-correlated errors in $\rho_i(x, y)$

More Recently

- CRESST: search for dark matter using cryogenic crystal detectors
 - data analysis of data taken in Gran Sasso laboratory: trying to identify potential dark matter candidates

- BELLE-II: look for matter-antimatter asymmetries, development of pixel detector:
 - statistical analysis for quality assurance

Thank You!