

Search for Supersymmetry in Multileptonic Final States with Collimated τ Pairs with the ATLAS Detector

Marian Rendel

Max Planck Institute for Physics (Werner-Heisenberg-Institut)

Monday 16th July, 2018

Supersymmetry (SUSY) predicts a boson for each SM fermion and vice versa (same quantum numbers except spin).

New conserved quantity in most SUSY models:

$$P_{R} = (-1)^{3(B-L)+2s} = \begin{cases} +1 & \text{for SM particles} \\ -1 & \text{for SUSY particles} \end{cases}$$

Consequence: lightest SUSY particle is stable

07/16/2018

R-parity Violating Supersymmetry

In some SUSY models R-parity is not conserved

Final states with high lepton multiplicity

 \rightarrow Search for the four lepton final state

Advantages: low Standard Model background contribution

Considered processes:

	Electron	Muon	Tau	Jet
pT	$> 7 \mathrm{GeV}$	$> 5 \mathrm{GeV}$	> 20 GeV	> 20 GeV
$ \eta $	< 2.47	< 2.7	< 2.47	< 2.8

Leptons have to be isolated from hadronic activity

Reject events with: $|m_{\ell^+\ell^-} - m_Z| < 10 \text{ GeV}$

Discriminating variable:

$m_{\mathrm{eff}} = \sum_{\ell=e,\mu, au} p_{\mathrm{T}}(\ell) + \sum_{p_{\mathrm{T}}(j) > 40 \text{ GeV}} p_{\mathrm{T}}(j) + E_{\mathrm{T}}^{j}$				
SR	N _ℓ	$N_{ au}$	m _{eff}	
SR0A	≥ 4	= 0	> 600 GeV	
SR0B	≥ 4	= 0	> 1100 GeV	
SR1	= 3	≥ 1	> 700 GeV	
SR2	=2	≥ 2	> 650 GeV	

Two types of background:

- Irreducible background:
 - Processes with four or more leptons in the final state
 - e.g. ZZ, $t\bar{t}Z$, VVZ (V = Z, W)
 - Estimated from Monte Carlo simulation
- Reducible background:
 - Processes with at least one fake lepton
 - Estimated with data-driven fake-factor method
 - e.g. $t\bar{t}$, Z+jets

4 -----

$m_{\rm eff}$ distribution in the SR1 region

Analysis based on data taken in 2015-2016 (36.1 fb⁻¹)

No significant excess of data observed

arXiv:1804.03602

Results

sensitivity drops for low LSP masses in case of LSP decays into τ s

Results

sensitivity drops for low LSP masses in case of LSP decays into τs

 τ reconstruction targets hadronically decaying $\tau \mathbf{s}$

- Group calorimeter signals from hadrons into a cone (jet). Cone size: $R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$
- Taus are seeded using jets with R = 0.4.
- Two regions core- and isolation-cone
- Tracks within a cone of < 0.2 are associated to the tau candidate
- Multivariate-based rejection of fake τ (quark- and gluon-initiated jets, electrons)

ΔR Distribution

events enriched with collimated τ pairs for low LSP masses

- efficiency of au reconstruction decreases rapidly for $\Delta {\it R}(au, au) < 0.4$

ightarrow new method: di-au reconstruction

ΔR Distribution

- events enriched with collimated τ pairs for low LSP masses
- efficiency of τ reconstruction decreases rapidly for $\Delta {\it R}(\tau,\tau) < 0.4$

ightarrow new method: di-au reconstruction

ΔR Distribution

- events enriched with collimated τ pairs for low LSP masses
- efficiency of τ reconstruction decreases rapidly for $\Delta {\it R}(\tau,\tau) < 0.4$
- ightarrow new method: di-au reconstruction

 $\mathrm{Di}\text{-}\tau$ reconstruction: reconstruct two hadronically decaying τ into a single object

Originally developed and optimized using boosted Higgs decays

- Seeds from a jet with R = 1.0(0.4 for standard τ reconstruction)
- $p_{\rm T} > 50~{\rm GeV}$ (reduced from $p_{\rm T} > 300~{\rm GeV}$)
- $|\eta| < 2.5$
- At least 2 subjets (*R* = 0.2) with at least one associated track

$\mathrm{Di}\text{-}\tau$ Identification

BDT-based fake di- τ rejection

- Signal: truth-matched di-*τ* from SUSY gluino process
- Background: di- τ candidates from data (dominated by QCD jet production), $t\bar{t}, Z \rightarrow e^+e^-$

Signal di- τ : candidate with BDT score>0.5

- electrons can fake a subjet
- BDT fails to reject them
- reject di-τ if the two leading subjets are matched to an electron (ΔR < 0.2)
- signal reduced by 40%
- background reduced by two orders of magnitude

New region (2L1DiT) with $\textit{N}_\ell=2,\textit{N}_\tau\leq 1$ and $\textit{N}_{\text{Di-} au}\geq 1$

Comparison of the expected significances between di- τ region and standard τ region

new region $m_{\rm eff} > 1500~{\rm GeV}$

old region (2L2T) $m_{\rm eff} > 700~{\rm GeV}$

- Final states with four lepton provides high sensitivity to RPV SUSY due to low SM background
- Low sensitivity for low LSP masses due to collimated τ pairs
- New di-au reconstruction method
- Optimization for RPV SUSY processes
- Increased sensitivity to low LSP masses with di- τ reconstruction
- ightarrow Use of the new di-au for a four-lepton search with the data set of 2015-2018