Proof of Principle Booster: Status

Jacob Egge

1

Systematic Effects - Mechanical

Mechanical Precision

Temperature Response

 $\sigma_{mech} \approx 0.65 \,\mu\,\mathrm{m}$

 $[\]Delta d_T \approx (7 \pm 2) \mu \,\mathrm{m}\,\mathrm{K}^{-1}$

- Unwanted reflections cause ripples in group delay
- Change best fit disk distances

• Measure reflections Sparameters and give them to the model

Long range trend:

- Rail curvature
- Beam shape and thus unwanted reflections change over distance
- For up to 4 sapphire disks: < 3 μ m/mm

Fluctuations:

- Unmodelled reflections cause systematic oscillations
- Disk positioning precision and correlations cause statistical deviation
- For up to 4 sapphire disks: σ <17 μ m

Including first order unwanted reflections

Including second order unwanted reflections

Likely cause: Beam shape changes with each order

October 8 2018

Systematic Effects – Diffraction & Tilts

October 8 2018

How well can one reproduce a desired group delay?

- Repeatedly adjust setup to model
- Equidistant spacings of 8mm
- Include first order unwanted reflection

2 Disks 1 Disk $\sigma_1 \approx 4 \mu m$ $\sigma_1 \approx 2 \mu m$ $\sigma_2 \approx 4 \mu m$ ~6 Ֆ A r 0 r Δd₂ [μm] $\Delta d_1 [\mu m]$ 0 ۶, ۶ % ଚ 0 S ~6 0 ~6

 Δd_1 [µm]

∆d₂[µm]

October 8 2018

• Correlations between disks main contributor to deviation

October 8 2018

• Correlations between disks

• Different spacings produce similar EM response

Effect on boost factor?

 → Fit model to each previously adjusted setup

• Deviation in frequency and amplitude

```
October 8 2018
```

Relative Amplitude Deviation

Relative Frequency Deviation

- Tilts introduce losses
- Higher order reflections poorly modelled

October 8 2018

Conclusion

- µm disk positioning
- First order reflections can be modelled → still: long range trend and oscillations
- Diffraction and disk tilts likely cause shifts

- Disk spacing deviation increases with more disks mainly due to correlations
- Boostfactor deviation still manageable for 5 disks
 - \rightarrow go to higher disks
 - \rightarrow Limited by tilts and higher order reflections
 - \rightarrow motorized tilts, interferometer, better antenna

Muchas gracias por su atención!

October 8 2018

October 8 2018

October 8 2018

October 8 2018

October 8 2018

October 8 2018

October 8 2018