

Measurement of dielectric properties: (focusing on loss tangent)

1

Alexander Schmidt (RWTH Aachen)

Stephan Martens, Christoph Krieger, Jan Schütte-Engel (Uni Hamburg)

basics

dynamic:

$$I = I_{c} + I_{l} = V (j\omega C_{0}\kappa' + G)$$

If $G = \omega C_{0}\kappa''$, then
$$I = V (j\omega C_{0})(\kappa' - j\kappa'') = V (j\omega C_{0})\kappa$$

$$\omega = 2\pi f$$

there can be a frequency dependence

boost factor

- **note**: state of the art uncertainty in
 - tan δ measurement: ~10⁻⁶ (see later slides)
- 10⁻⁶ can make a significant difference in boost factor

boost factor

• effect of uncertainty in the real part

- assume uncertainty of refractive index ($n=\sqrt{\varepsilon\mu}$) of 0.1
- setup with one disk and one mirror (transparent case)
- disk thickness 1mm
- resonance peak moves by 500 MHz

some measurement concepts

comparison

(plot stolen from an Agilent Technologies talk)

comparison

split post method

split post method

 $\begin{array}{l} f_0 = empty \ resonance \ frequency \\ f_s = resonance \ frequency \ with \ sample \\ K_s = some \ function \ specific \ to \ SPDR \end{array}$

split post method

Intrinsic Microwave Dielectric Loss of Lanthanum Aluminate

Takeshi Shimada, Koji Ichikawa, Tetsuro Minemura, Hiroki Yamauchi, Wataru Utsumi, Yoshinobu Ishii, Jonathan Breeze, and Neil McN. Alford

Fig. 2. Temperature dependence of permittivity of LaAlO₃.

2243

results from literature about LAO

double-peak structure at 82K and 226K:

Sparks et al. showed that the intrinsic dielectric loss followed a two-phonon difference process, whereby a microwave photon is absorbed in the process of exciting an acoustic phonon to the optical phonon branch near the Brillouin zone boundary

 if I understand the paper well, this plot also shows a theoretical curve from a calculation

results from literature about LAO

comments/questions:

- the paper does not use the word "uncertainty"
- from their plot it looks like tan $\delta = 6 \cdot 10^{-6} \pm 20\%\,$ at 77K which is almost too good
- it's done at 7 GHz, what about other frequencies?
- is the theoretical calculation very precise?

- Krupka et al (2012) (ref TH6D-7)
 - method: split post and superconducting single post resonators
 - result: $\tan \delta = 4 \cdot 10^{-5} \pm 50\%$ (at 10GHz, 77K)
 - seems to contradict the Shimada paper (slide 13) by 1.9 sigma

more found in literature about Sapphire

- Krupka et al (1999) (IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 6, JUNE 1999)
 - method: split post resonator, whispering gallery modes, 5 GHz

the lines are fits of the scattered measurement points

Fig. 6. Results of dielectric loss tangent measurements versus frequency for low-loss ceramic as determined with whispering-gallery-mode dielectric resonator technique.

- Aupi_etal_JAP95_2639_2004 <
 - method: TE01δ Resonator
 - result: 1.0e-5 @ 9GHz, 300K

available equipment

- U Hamburg:
 - network analyzern(Rohde&Schwarz ZVA-67)
 - split post resonators at 2 Frequenies (ordered)
- people: Stephan Martens, Christoph Krieger

- RWTH Aachen, Physics Institute IIIA
 - network analyzer (8.5 GHz)
 - (probably need to buy a better one)
- people:
 - electronics lab engineers
 - new student + postdoc to be found

III. Physikalisches

available equipment

- RWTH Aachen, IHF institute
 - network analyzer (67 GHz) Rohde&Schwarz ZVA-67

split-post dielectric resonators
1 GHz and 5GHz

Institute of High Frequency Technology

some questions under discussion

- uncertainties seem to be large, how to reduce them?
- how reproducible are results? Does the measurement concept depend stongly on the MUT dimensions?
- how precise do we need to measure this? (need more simulation studies)
- no result (or measurement device) above 15 GHz found in literature
- how to measure compound materials (tiled disks with glue)